3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Schizandrin A exhibits potent anticancer activity in colorectal cancer cells by inhibiting heat shock factor 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat shock factor 1 (HSF1) is a powerful multifaceted oncogenic modifier that plays a role in maintaining the protein balance of cancer cells under various stresses. In recent studies, there have been reports of increased expression of HSF1 in colorectal cancer (CRC) cells, and the depletion of the HSF1 gene knockdown has inhibited colon cancer growth both in vivo and in vitro. Therefore, HSF1 is a promising target for colon cancer treatment and chemoprevention. In the present study, we found that Schizandrin A (Sch A) significantly inhibited the growth of CRC cell lines by inducing cell cycle arrest, apoptosis and death. Through HSE luciferase reporter assay and quantitative PCR (qPCR), we identified Sch A as a novel HSF1 inhibitor. In addition, Sch A could effectively inhibit the induction of HSF1 target proteins such as heat-shock protein (HSP) 70 (HSP70) and HSP27, whether in heat shock or normal temperature culture. In the Surface Plasmon Resonance (SPR) experiment, Sch A showed moderate affinity with HSF1, further confirming that Sch A might be a direct HSF1 inhibitor. The molecular docking and molecular dynamic simulation results of HSF1/Sch A suggested that Sch A formed key hydrogen bond and hydrophobic interactions with HSF1, which may contribute to its potent HSF1 inhibition. These findings provide clues for the design of novel HSF1 inhibitors and drug candidates for colon cancer treatment.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design

          Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) are arguably very popular methods for binding free energy prediction since they are more accurate than most scoring functions of molecular docking and less computationally demanding than alchemical free energy methods. MM/PBSA and MM/GBSA have been widely used in biomolecular studies such as protein folding, protein-ligand binding, protein-protein interaction, etc. In this review, methods to adjust the polar solvation energy and to improve the performance of MM/PBSA and MM/GBSA calculations are reviewed and discussed. The latest applications of MM/GBSA and MM/PBSA in drug design are also presented. This review intends to provide readers with guidance for practically applying MM/PBSA and MM/GBSA in drug design and related research fields.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide.

            The rate constant for the transition between the equatorial and axial conformations of N-acetylalanyl-N'-methylamide has been determined from Langevin dynamics (LD) simulations with no explicit solvent. The isomerization rate is maximum at collision frequency gamma = 2 ps-1, shows diffusive character for gamma greater than or equal to 10 ps-1, but does not approach zero even at gamma = 0.01 ps-1. This behavior differs from that found for a one-dimensional bistable potential and indicates that both collisional energy transfer with solvent and vibrational energy transfer between internal modes are important in the dynamics of barrier crossing for this system. It is suggested that conformational searches of peptides be carried out using LD with a collision frequency that maximizes the isomerization rate (i.e., gamma approximately 2 ps-1). This method is expected to be more efficient than either molecular dynamics in vacuo (which corresponds to LD with gamma = 0) or molecular dynamics in solvent (where dynamics is largely diffusive).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.

              Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor SIRT1 prolonged HSF1 binding to the heat shock promoter Hsp70 by maintaining HSF1 in a deacetylated, DNA-binding competent state. Conversely, down-regulation of SIRT1 accelerated the attenuation of the heat shock response (HSR) and release of HSF1 from its cognate promoter elements. These results provide a mechanistic basis for the requirement of HSF1 in the regulation of life span and establish a role for SIRT1 in protein homeostasis and the HSR.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biosci Rep
                Biosci. Rep
                bsr
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                27 March 2020
                12 March 2020
                : 40
                : 3
                : BSR20200203
                Affiliations
                The Surgical Department of Coloproctology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
                Author notes
                Correspondence: Qiao-qiong Dai ( daiqiaoqionggcwk@ 123456126.com )
                Author information
                http://orcid.org/0000-0001-6929-8632
                Article
                BSR20200203
                10.1042/BSR20200203
                7069920
                32110802
                4166e57c-3db9-4434-aa92-56002d49ae62
                © 2020 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 21 January 2020
                : 18 February 2020
                : 19 February 2020
                : 28 February 2020
                Page count
                Pages: 14
                Categories
                Computational Biology
                Cancer
                Chemical Biology
                Research Articles

                Life sciences
                crc,hsf1,molecular docking and molecular dynamic simulation,sch a
                Life sciences
                crc, hsf1, molecular docking and molecular dynamic simulation, sch a

                Comments

                Comment on this article