11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring brusatol as a new anti-pancreatic cancer adjuvant: biological evaluation and mechanistic studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic cancer is highly resistant to chemotherapeutic agents and is known to have a poor prognosis. The development of new therapeutic entities is badly needed for this deadly malignancy. In this study, we demonstrated for the first time that brusatol, a natural quassinoid isolated from a Chinese herbal medicine named Bruceae Fructus, possessed potent cytotoxic effect against different pancreatic adenocarcinoma cell lines. Its anti-pancreatic cancer effect was comparable to that of the first-line chemotherapeutic agents such as gemcitabine and 5-fluorouracil, with a more favorable safety profile. In addition, brusatol showed a synergistic anti-proliferative effect toward PANC-1 and Capan-2 cell lines when combined with gemcitabine or 5-fluorouracil. The results of flow cytometry suggested that brusatol combination treatment with gemcitabine or 5-fluorouracil was able to cause cell cycle arrest at G2/M phase, and accentuate apoptosis in PANC-1 cells. Moreover, brusatol deactivated gemcitabine/5-fluorouracil-induced NF-κB activation. Western blot analysis and qRT-PCR results showed that brusatol significantly down-regulated the expression of vimentin and Twist, and markedly stimulated the expression of E-cadherin, the key regulatory factors of the epithelial-mesenchymal transition process. Furthermore, treatment with combination of brusatol and gemcitabine or 5-fluorouracil significantly reduced in vivo tumor growth when compared with treatment of either brusatol or gemcitabine/5-fluorouracil alone. Taken together, these results have amply demonstrated that brusatol is a potent anti-pancreatic cancer natural compound, and the synergistic anti-pancreatic cancer effects of brusatol and gemcitabine/5-fluorouracil observed both in vitro and in vivo are associated with the suppression of epithelial-mesenchymal transition process, indicating that brusatol is a promising adjunct to the current chemotherapeutic regimen.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism.

          The major obstacle in cancer treatment is the resistance of cancer cells to therapies. Nrf2 is a transcription factor that regulates a cellular defense response and is ubiquitously expressed at low basal levels in normal tissues due to Keap1-dependent ubiquitination and proteasomal degradation. Recently, Nrf2 has emerged as an important contributor to chemoresistance. High constitutive expression of Nrf2 was found in many types of cancers, creating an environment conducive for cancer cell survival. Here, we report the identification of brusatol as a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells and A549 xenografts to cisplatin and other chemotherapeutic drugs. Mechanistically, brusatol selectively reduces the protein level of Nrf2 through enhanced ubiquitination and degradation of Nrf2. Consequently, expression of Nrf2-downstream genes is reduced and the Nrf2-dependent protective response is suppressed. In A549 xenografts, brusatol and cisplatin cotreatment induced apoptosis, reduced cell proliferation, and inhibited tumor growth more substantially when compared with cisplatin treatment alone. Additionally, A549-K xenografts, in which Nrf2 is expressed at very low levels due to ectopic expression of Keap1, do not respond to brusatol treatment, demonstrating that brusatol-mediated sensitization to cisplatin is Nrf2 dependent. Moreover, a decrease in drug detoxification and impairment in drug removal may be the primary mechanisms by which brusatol enhances the efficacy of chemotherapeutic drugs. Taken together, these results clearly demonstrate the effectiveness of using brusatol to combat chemoresistance and suggest that brusatol can be developed into an adjuvant chemotherapeutic drug.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition

            Background Epithelial to mesenchymal transition (EMT), implicated as a mechanism for tumor dissemination, is marked by loss of E-cadherin, disruption of cell adhesion, and induction of cell motility and invasion. In most intraductal breast carcinomas E-cadherin is regulated epigenetically via methylation of the promoter. E-cadherin expression is therefore dynamic and open to modulation by the microenvironment. In addition, it has been observed that metastatic foci commonly appear more differentiated than the primary tumor, suggesting that cancer cells may further undergo a mesenchymal to epithelial reverting transition (MErT) in the secondary organ environment following the EMT that allows for escape. Results We first examined E-cadherin expression in primary breast tumors and their corresponding metastases to liver, lung and brain and discovered that 62% (10/16) of cases showed increased E-cadherin expression in the metastases compared to the primaries. These observations led to the question of whether the positive metastatic foci arose from expansion of E-cadherin-positive cells or from MErT of originally E-cadherin-negative disseminated cells. Thus, we aimed to determine whether it was possible for the mesenchymal-like MDA-MB-231 breast cancer cells to undergo an MErT through the re-expression of E-cadherin, either through exogenous introduction or induction by the microenvironment. Ectopic expression of full-length E-cadherin in MDA-MB-231 cells resulted in a morphological and functional reversion of the epithelial phenotype, with even just the cytosolic domain of E-cadherin yielding a partial phenotype. Introduction of MDA-MB-231 cells or primary explants into a secondary organ environment simulated by a hepatocyte coculture system induced E-cadherin re-expression through passive loss of methylation of the promoter. Furthermore, detection of E-cadherin-positive metastatic foci following the spontaneous metastasis of MDA-MB-231 cells injected into the mammary fat pad of mice suggests that this re-expression is functional. Conclusions Our clinical observations and experimental data indicate that the secondary organ microenvironment can induce the re-expression of E-cadherin and consequently MErT. This phenotypic change is reflected in altered cell behavior and thus may be a critical step in cell survival at metastatic sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells.

              Besides its therapeutic effects, chemotherapeutic agents also enhance the malignancy of treated cancers in clinical situations. Recently, epithelial-mesenchymal transition (EMT) has attracted attention in studies of tumor progression. We aimed to test whether transient Adriamycin treatment induces EMT and apoptosis simultaneously in cancer cells, clarify why the same type of cells responds differentially (i.e., apoptosis, EMT) to Adriamycin treatment, and elucidate the role of Twist1, the master regulator of EMT, in this process. In unsynchronized MCF7 cells or cells synchronized at different phases, apoptosis, EMT, and concurrent events [multidrug resistance (MDR) and tumor invasion] after Adriamycin or/and Twist1 small interfering RNA treatment were examined in vitro and in vivo. The Adriamycin-induced Twist1 expression and the interaction of Twist1 with p53-Mdm2 were examined by immunoblotting and immunoprecipitation, respectively. We showed in vitro that Adriamycin induced EMT and apoptosis simultaneously in a cell cycle-dependent manner. Only the cells undergoing EMT displayed enhanced invasion and MDR. Twist1 depletion completely blocked the mesenchymal transformation, partially reversed MDR, and greatly abolished invasion induced by Adriamycin. Also, we confirmed in vivo that Twist1 RNA interference improved the efficacy of Adriamycin for breast cancers. Further, Twist1 reduction in Adriamycin-treated cells promoted p53-dependent p21 induction and disrupted the association of p53 with Mdm2. Our studies show the diverse responses to Adriamycin treatment in cells at different phases, suggest an unrecognized role of EMT in regulating MDR and invasion, and show the efficacy of Twist1 RNA interference in Adriamycin-based chemotherapies for breast cancer.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                17 October 2017
                10 May 2017
                : 8
                : 49
                : 84974-84985
                Affiliations
                1 School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
                2 Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
                3 School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
                4 Liver Cirrhosis Diagnosis and Treatment Center, Beijing 302 Hospital, Beijing, China
                Author notes
                Correspondence to: Zhi-Xiu Lin, linzx@ 123456cuhk.edu.hk
                Article
                17761
                10.18632/oncotarget.17761
                5689587
                28548955
                41aadede-fe11-4504-8cb7-790bc15de2b3
                Copyright: © 2017 Lu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 September 2016
                : 17 April 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                pancreatic cancer,brusatol,gemcitabine,5-fluorouracil,combination therapy
                Oncology & Radiotherapy
                pancreatic cancer, brusatol, gemcitabine, 5-fluorouracil, combination therapy

                Comments

                Comment on this article