4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uric acid and uric acid to creatinine ratio in the assessment of chronic obstructive pulmonary disease: Potential biomarkers in multicomponent models comprising IL-1beta

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease, with oxidative stress and inflammation implicated in its development. Uric acid (UA) could exert anti-oxidative, pro-oxidative or pro-inflammatory effects, depending on the specific context. It was recently shown that soluble UA, and not just its crystals, could activate the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to interleukin (IL)-1β secretion. We aimed to assess the differences in blood levels of UA and its ratio with creatinine (UCR) between COPD patients and healthy subjects, as well as their association with disease severity, smoking status, common COPD comorbidities and therapy regimes. The diagnostic characteristics of UA and UCR were also explored. This study included 109 stable COPD patients and 95 controls and measured white blood cells (WBC), C-reactive protein (CRP), fibrinogen (Fbg), IL-1β, creatinine (CREAT) and UA. All of the parameters were increased in COPD patients, except for CREAT. UA and UCR were positively associated with WBC, CRP and IL-1β. COPD smokers had lower UA and UCR values. Common COPD therapy did not affect UA or UCR, while patients with cardiovascular diseases (CVD) had higher UA, but not UCR, levels. Patients with higher UCR values showed worse disease-related outcomes (lung function, symptoms, quality of life, history of exacerbations, BODCAT and BODEx). Also, UCR differentiated patients with different severity of airflow limitation as well as symptoms and exacerbations. The great individual predictive potential of UCR and IL-1β was observed with their odds ratios (OR) being 2.09 and 5.53, respectively. Multiparameter models of UA and UCR that included IL-1β were able to correctly classify 86% and 90% of cases, respectively. We suggest that UA might be a useful biomarker when combined with IL-1β, while UCR might be even more informative and useful in overall COPD assessments.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The NLRP3 inflammasome: molecular activation and regulation to therapeutics

          NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors

            The NLRP3 inflammasome is a multimeric protein complex that initiates an inflammatory form of cell death and triggers the release of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome has been implicated in a wide range of diseases, including Alzheimer’s disease, Prion diseases, type 2 diabetes, and some infectious diseases. It has been found that a variety of stimuli including danger-associated molecular patterns (DAMPs, such as silica and uric acid crystals) and pathogen-associated molecular patterns (PAMPs) can activate NLRP3 inflammasome, but the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Understanding the mechanisms of NLRP3 activation will enable the development of its specific inhibitors to treat NLRP3-related diseases. In this review, we summarize current understanding of the regulatory mechanisms of NLRP3 inflammasome activation as well as inhibitors that specifically and directly target NLRP3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells.

              Recent experimental and human studies have shown that hyperuricemia is associated with hypertension, systemic inflammation, and cardiovascular disease mediated by endothelial dysfunction and pathologic vascular remodeling. Elevated levels of C-reactive protein (CRP) have emerged as one of the most powerful independent predictors of cardiovascular disease. In addition to being a marker of inflammation, recent evidence suggests that CRP may participate directly in the development of atherosclerotic vascular disease. For investigating whether uric acid (UA)-induced inflammatory reaction and vascular remodeling is related to CRP, the UA-induced expression of CRP in human vascular smooth muscle cells (HVSMC) and human umbilical vein endothelial cells (HUVEC) was examined, as well as the pathogenetic role of CRP in vascular remodeling. It is interesting that HVSMC and HUVEC expressed CRP mRNA and protein constitutively, revealing that vascular cells are another source of CRP production. UA (6 to 12 mg/dl) upregulated CRP mRNA expression in HVSMC and HUVEC with a concomitant increase in CRP release into cell culture media. Inhibition of p38 or extracellular signal-regulated kinase 44/42 significantly suppressed UA-induced CRP expression, implicating these pathways in the response to UA. UA stimulated HVSMC proliferation whereas UA inhibited serum-induced proliferation of HUVEC assessed by 3H-thymidine uptake and cell counting, which was attenuated by co-incubation with probenecid, the organic anion transport inhibitor, suggesting that entry of UA into cells is responsible for CRP expression. UA also increased HVSMC migration and inhibited HUVEC migration. In HUVEC, UA reduced nitric oxide (NO) release. Treatment of vascular cells with anti-CRP antibody revealed a reversal of the effect of UA on cell proliferation and migration in HVSMC and NO release in HUVEC, which suggests that CRP expression may be responsible for UA-induced vascular remodeling. This is the first study to show that soluble UA, at physiologic concentrations, has profound effects on human vascular cells. The observation that UA alters the proliferation/migration and NO release of human vascular cells, mediated by the expression of CRP, calls for careful reconsideration of the role of UA in hypertension and vascular disease.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: VisualizationRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SupervisionRole: Writing – review & editing
                Role: InvestigationRole: ResourcesRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                5 June 2020
                2020
                : 15
                : 6
                : e0234363
                Affiliations
                [1 ] Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
                [2 ] University Hospital Centre Zagreb, Clinical Department for Lung Diseases Jordanovac, Zagreb, Croatia
                [3 ] School of Medicine, University of Zagreb, Zagreb, Croatia
                [4 ] University Hospital Centre Zagreb, Clinical Institute of Laboratory Diagnostics, Zagreb, Croatia
                National and Kapodistrian University of Athens, GREECE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-5302-3770
                Article
                PONE-D-20-07197
                10.1371/journal.pone.0234363
                7274385
                32502184
                41c9686d-9d83-4595-a312-b9b4661e37de
                © 2020 Rumora et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 March 2020
                : 22 May 2020
                Page count
                Figures: 2, Tables: 6, Pages: 17
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100004488, Hrvatska Zaklada za Znanost;
                Award ID: IP-2014-09-1247
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100004488, Hrvatska Zaklada za Znanost;
                Award ID: Young researchers' career development project – training of doctoral students
                Award Recipient :
                This work has been fully supported by the Croatian Science Foundation under the project number IP-2014-09-1247. The work of PhD student Iva Hlapčić has been fully supported by the “Young researchers' career development project – training of doctoral students” of the Croatian Science Foundation funded by the European Union from the European Social Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Pulmonology
                Chronic Obstructive Pulmonary Disease
                Physical Sciences
                Chemistry
                Chemical Compounds
                Acids
                Uric Acid
                Biology and Life Sciences
                Biochemistry
                Biomarkers
                Creatinine
                Medicine and Health Sciences
                Inflammatory Diseases
                Medicine and Health Sciences
                Pulmonology
                Pulmonary Function
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Medicine and Health Sciences
                Cardiovascular Medicine
                Cardiovascular Diseases
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article