25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Probability of Detecting Marine Predator-Prey and Species Interactions Using Novel Hybrid Acoustic Transmitter-Receiver Tags

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the nature of inter-specific and conspecific interactions in the ocean is challenging because direct observation is usually impossible. The development of dual transmitter/receivers, Vemco Mobile Transceivers (VMT), and satellite-linked (e.g. GPS) tags provides a unique opportunity to better understand between and within species interactions in space and time. Quantifying the uncertainty associated with detecting a tagged animal, particularly under varying field conditions, is vital for making accurate biological inferences when using VMTs. We evaluated the detection efficiency of VMTs deployed on grey seals, Halichoerus grypus, off Sable Island (NS, Canada) in relation to environmental characteristics and seal behaviour using generalized linear models (GLM) to explore both post-processed detection data and summarized raw VMT data. When considering only post-processed detection data, only about half of expected detections were recorded at best even when two VMT-tagged seals were estimated to be within 50–200 m of one another. At a separation of 400 m, only about 15% of expected detections were recorded. In contrast, when incomplete transmissions from the summarized raw data were also considered, the ratio of complete transmission to complete and incomplete transmissions was about 70% for distances ranging from 50–1000 m, with a minimum of around 40% at 600 m and a maximum of about 85% at 50 m. Distance between seals, wind stress, and depth were the most important predictors of detection efficiency. Access to the raw VMT data allowed us to focus on the physical and environmental factors that limit a transceiver’s ability to resolve a transmitter’s identity.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Biotelemetry: a mechanistic approach to ecology.

          Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Linking movement, diving, and habitat to foraging success in a large marine predator.

            Establishing where and when predators forage is essential to understanding trophic interactions, yet foraging behavior remains poorly understood in large marine carnivores. We investigated the factors leading to foraging success in gray seals (Halichoerus grypus) in the Northwest Atlantic in the first study to use simultaneous deployments of satellite transmitters, time depth recorders, and stomach-temperature loggers on a free-ranging marine mammal. Thirty-two seals were each fitted with the three types of instrumentation; however, complete records from all three instruments were obtained from only 13 individuals, underscoring the difficulty of such a multi-instrument approach. Our goal was to determine the characteristics of diving, habitat, and movement that predict feeding. We linked diving behavior to foraging success at two temporal scales: trips (days) and bouts (hours) to test models of optimal diving, which indicate that feeding can be predicted by time spent at the bottom of a dive. Using an information-theoretic approach, a Generalized Linear Mixed Model with trip duration and accumulated bottom time per day best explained the number of feeding events per trip, whereas the best predictor of the number of feeding events per bout was accumulated bottom time. We then tested whether characteristics of movement were predictive of feeding. Significant predictors of the number of feeding events per trip were angular variance (i.e., path tortuosity) and distance traveled per day. Finally, we integrated measures of diving, movement, and habitat at four temporal scales to determine overall predictors of feeding. At the 3-h scale, mean bottom time and distance traveled were the most important predictors of feeding frequency, whereas at the 6-h and 24-h time scales, distance traveled alone was most important. Bathymetry was the most significant predictor of feeding at the 12-h interval, with feeding more likely to occur at deeper depths. Our findings indicate that several factors predict feeding in gray seals, but predictor variables differ across temporal scales such that environmental variation becomes important at some scales and not others. Overall, our results illustrate the value of simultaneously recording and integrating multiple types of information to better understand the circumstances leading to foraging success.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variation in milk production and lactation performance in grey seals and consequences for pup growth and weaning characteristics.

              Phocid seals are one of the few groups of mammals capable of sustaining the energetic demands of lactation entirely through body nutrient stores while fasting. Lactation performance of the female in turn influences the rate and pattern of pup growth. We examined variation in and patterns of milk composition and production, maternal energy output, and pup growth and energy deposition over the entire lactation period in 18 grey seal mother-pup pairs using hydrogen isotope (3H2O and D2O) dilution. Milk composition was independent of maternal mass and nutrient stores, indicating dependence on other physiological and genetic factors. Heavier females lactated longer (r2=0.653, P<0.001), had higher total milk outputs (r2=0.652, P<0.001), and produced larger pups at weaning (r2=0.417, P=0.005). While fatter females lactated for longer periods of time (r2=0.595, P<0.001), females with a larger lean body mass at parturition produced more milk (r2=0.579, P<0.001). Total milk energy output was the strongest predictor of pup weaning mass, which, along with the pup's efficiency of energy storage, accounted for 91% of the variation in weaning mass. Nevertheless, there was sufficient plasticity in milk composition and energy output that some smaller females produced relatively large pups. Few females appeared to deplete body nutrients to the point where it might limit the duration of lactation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                3 June 2014
                : 9
                : 6
                : e98117
                Affiliations
                [1 ]Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
                [2 ]Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
                [3 ]Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
                [4 ]VEMCO Ltd., Halifax, Nova Scotia, Canada
                University of Aveiro, Portugal
                Author notes

                Competing Interests: Dale Webber is affiliated with the commercial company (VEMCO, Ltd) that develop Vemco Mobile Transceivers (VMT). VEMCO Ltd. did not finance the project, and was not directly involved in the the study design and analysis of the paper. This affiliation does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: DCL WDB IDJ SJI. Performed the experiments: DCL WDB. Analyzed the data: LLB IDJ JEMF. Contributed reagents/materials/analysis tools: DMW. Wrote the paper: LLB IDJ JEMF SJI WDB DCL DMW.

                Article
                PONE-D-14-08118
                10.1371/journal.pone.0098117
                4043729
                24892286
                41d0a9bb-828d-4d32-80a1-cf5a2c21f003
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 February 2014
                : 28 April 2014
                Page count
                Pages: 11
                Funding
                This study and a graduate student stipend to L. Baker were supported by a research network grant (NETGP 375118 – 08) from the Natural Sciences and Engineering Research Council of Canada (NSERC) for the Ocean Tracking Network; L. Baker was additionally supported by a Dalhousie Graduate Fellowship. Additional support was provided by NSERC Discovery Grants to J. Mills Flemming, D. Bowen and S. Iverson, and by the Department of Fisheries and Oceans Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Marine Ecology
                Marine Biology
                Marine Technology
                Physical Sciences
                Physics
                Acoustics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article