27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Do recalcitrant seeds really exist? Translated title: Sementes recalcitrantes realmente existem?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the 70's, seeds were divided into two categories: recalcitrant and orthodox. In the 80's, it was necessary to create an intermediate category; from the 90's onwards, a gradient between orthodox and recalcitrant categories has been considered by several authors. Currently, the terms orthodox and recalcitrant are appropriate just for technological purposes, not for scientific studies. It seems that the differences between recalcitrant and orthodox seeds lie only on the maturity stage in which they are detached from the mother plant, the recalcitrant ones in a very immature stage. This implies that little progress should be expected to expand the storability of these recalcitrant seeds with the application of any treatment after harvesting. Efforts shall be focused on amplifying the maturation period of these seeds by keeping them linked to the mother plant until the maturation process has been completed.

          Translated abstract

          Na década de 1970, as sementes foram divididas em recalcitrantes e ortodoxas. Na década de 1980, foi necessário criar a categoria das intermediárias e, a partir de 1990, um gradiente entre as categorias ortodoxas e recalcitrantes tem sido considerado por vários autores. Atualmente, os termos ortodoxa e recalcitrante são apropriados apenas para fins tecnológicos, não para estudos científicos. As diferenças entre sementes recalcitrantes e ortodoxas parecem residir apenas no estádio de maturidade no qual se desprendem da planta mãe, as recalcitrantes em uma fase muito imatura. Isso implica que pouco progresso deve ser esperado para expandir a capacidade de armazenamento com a aplicação de qualquer tipo de tratamento após a colheita dessas sementes recalcitrantes. Esforços devem ser voltados para ampliar o período de maturidade das sementes, mantendo-as ligadas à planta-mãe até que o processo de maturação tenha sido concluído.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          Fisiologia de sementes de plantas cultivadas

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of vitrification in anhydrobiosis.

            Numerous organisms are capable of surviving more or less complete dehydration. A common feature in their biochemistry is that they accumulate large amounts of disaccharides, the most common of which are sucrose and trehalose. Over the past 20 years, we have provided evidence that these sugars stabilize membranes and proteins in the dry state, most likely by hydrogen bonding to polar residues in the dry macromolecular assemblages. This direct interaction results in maintenance of dry proteins and membranes in a physical state similar to that seen in the presence of excess water. An alternative viewpoint has been proposed, based on the fact that both sucrose and trehalose form glasses in the dry state. It has been suggested that glass formation (vitrification) is in itself sufficient to stabilize dry biomaterials. In this review we present evidence that, although vitrification is indeed required, it is not in itself sufficient. Instead, both direct interaction and vitrification are required. Special properties have often been claimed for trehalose in this regard. In fact, trehalose has been shown by many workers to be remarkably (and sometimes uniquely) effective in stabilizing dry or frozen biomolecules, cells, and tissues. Others have not observed any such special properties. We review evidence here showing that trehalose has a remarkably high glass-transition temperature (Tg). It is not anomalous in this regard because it lies at the end of a continuum of sugars with increasing Tg. However, it is unusual in that addition of small amounts of water does not depress Tg, as in other sugars. Instead, a dihydrate crystal of trehalose forms, thereby shielding the remaining glassy trehalose from effects of the added water. Thus under less than ideal conditions such as high humidity and temperature, trehalose does indeed have special properties, which may explain the stability and longevity of anhydrobiotes that contain it. Further, it makes this sugar useful in stabilization of biomolecules of use in human welfare.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The limits and frontiers of desiccation-tolerant life.

              Drying to equilibrium with the air is lethal to most species of animals and plants, making drought (i.e., low external water potential) a central problem for terrestrial life and a major cause of agronomic failure and human famine. Surprisingly, a wide taxonomic variety of animals, microbes, and plants do tolerate complete desiccation, defined as water content below 0.1 g H(2)O g(-1) dry mass. Species in five phyla of animals and four divisions of plants contain desiccation-tolerant adults, juveniles, seeds, or spores. There seem to be few inherent limits on desiccation tolerance, since tolerant organisms can survive extremely intense and prolonged desiccation. There seems to be little phylogenetic limitation of tolerance in plants but may be more in animals. Physical constraints may restrict tolerance of animals without rigid skeletons and to plants shorter than 3 m. Physiological constraints on tolerance in plants may include control by hormones with multiple effects that could link tolerance to slow growth. Tolerance tends to be lower in organisms from wetter habitats, and there may be selection against tolerance when water availability is high. Our current knowledge of limits to tolerance suggests that they pose few obstacles to engineering tolerance in prokaryotes and in isolated cells and tissues, and there has already been much success on this scientific frontier of desiccation tolerance. However, physical and physiological constraints and perhaps other limits may explain the lack of success in extending tolerance to whole, desiccation-sensitive, multicellular animals and plants. Deeper understanding of the limits to desiccation tolerance in living things may be needed to cross this next frontier.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                hoehnea
                Hoehnea
                Hoehnea
                Instituto de Botânica (São Paulo )
                2236-8906
                December 2013
                : 40
                : 4
                : 583-593
                Affiliations
                [1 ] Instituto de Botânica Brazil
                [2 ] Universidade Federal do ABC Brazil
                [3 ] Instituto de Botânica Brazil
                Article
                S2236-89062013000400001
                10.1590/S2236-89062013000400001
                41dcbac7-dd9b-4527-88e0-7ab8ca028926

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=2236-8906&lng=en
                Categories
                PLANT SCIENCES

                Plant science & Botany
                conservation,desiccation tolerance,maturation,seed storage,armazenamento,conservação,maturação,tolerância à dessecação

                Comments

                Comment on this article