22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluid and hemodynamic management in hemodialysis patients: challenges and opportunities Translated title: Manejo hídrico e hemodinâmico em pacientes em hemodiálise: desafios e oportunidades

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fluid volume and hemodynamic management in hemodialysis patients is an essential component of dialysis adequacy. Restoring salt and water homeostasis in hemodialysis patients has been a permanent quest by nephrologists summarized by the ‘dry weight’ probing approach. Although this clinical approach has been associated with benefits on cardiovascular outcome, it is now challenged by recent studies showing that intensity or aggressiveness to remove fluid during intermittent dialysis is associated with cardiovascular stress and potential organ damage. A more precise approach is required to improve cardiovascular outcome in this high-risk population. Fluid status assessment and monitoring rely on four components: clinical assessment, non-invasive instrumental tools (e.g., US, bioimpedance, blood volume monitoring), cardiac biomarkers (e.g. natriuretic peptides), and algorithm and sodium modeling to estimate mass transfer. Optimal management of fluid and sodium imbalance in dialysis patients consist in adjusting salt and fluid removal by dialysis (ultrafiltration, dialysate sodium) and by restricting salt intake and fluid gain between dialysis sessions. Modern technology using biosensors and feedback control tools embarked on dialysis machine, with sophisticated analytics will provide direct handling of sodium and water in a more precise and personalized way. It is envisaged in the near future that these tools will support physician decision making with high potential of improving cardiovascular outcome.

          Resumo

          O volume de fluidos e o controle hemodinâmico em pacientes em hemodiálise é um componente essencial da adequação da diálise. A restauração da homeostase do sal e da água em pacientes em hemodiálise tem sido uma busca constante por parte dos nefrologistas, no que condiz à abordagem do “peso seco. Embora essa abordagem clínica tenha sido associada a benefícios no desfecho cardiovascular, recentemente tem sido questionada por estudos que mostram que a intensidade ou agressividade para remover fluidos durante a diálise intermitente está associada a estresse cardiovascular e dano potencial a órgãos.para remover fluidos durante a diálise intermitente está associada a estresse cardiovascular e dano potencial a órgãos. Uma abordagem mais precisa é necessária para melhorar o desfecho cardiovascular nessa população de alto risco. A avaliação e monitorização do estado hídrico baseiam-se em quatro componentes: avaliação clínica, ferramentas instrumentais não invasivas (por exemplo, US, bioimpedância, monitorização do volume sanguíneo), biomarcadores cardíacos (e.g. peptídeos natriuréticos), algoritmos e modelagem de sódio para estimar a transferência de massa. O manejo otimizado do desequilíbrio hídrico e de sódio em pacientes dialíticos consiste em ajustar a remoção de sal e líquido por diálise (ultrafiltração, dialisato de sódio), e restringir a ingestão de sal e o ganho de líquido entre as sessões de diálise. Tecnologia moderna que utiliza biosensores e ferramentas de controle de feedback, hoje parte da máquina de diálise, com análises sofisticadas, proporcionam o manejo direto sobre o sódio e a água de uma maneira mais precisa e personalizada. Prevê-se no futuro próximo que essas ferramentas poderão auxiliar na tomada de decisão do médico, com alto potencial para melhorar o resultado cardiovascular.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Hemodialysis-induced cardiac injury: determinants and associated outcomes.

          Hemodialysis (HD)-induced myocardial stunning driven by ischemia is a recognized complication of HD, which can be ameliorated by HD techniques that improve hemodynamics. In nondialysis patients, repeated ischemia leads to chronic reduction in left ventricular (LV) function. HD may initiate and drive the same process. In this study, we examined the prevalence and associations of HD-induced repetitive myocardial injury and long-term effects on LV function and patient outcomes. Seventy prevalent HD patients were assessed for evidence of subclinical myocardial injury at baseline using serial echocardiography and followed up after 12 mo. Intradialytic blood pressure, hematologic and biochemical samples, and patient demographics were also collected at both time points. Sixty-four percent of patients had significant myocardial stunning during HD. Age, ultrafiltration volumes, intradialytic hypotension, and cardiac troponin-T (cTnT) levels were independent determinants associated with its presence. Myocardial stunning was associated with increased relative mortality at 12 mo (P = 0.019). Cox regression analysis showed increased hazard of death in patients with myocardial stunning and elevated cTnT than in patients with elevated cTnT alone (P < 0.02). Patients with myocardial stunning who survived 12 mo had significantly lower LV ejection fractions at rest and on HD (P < 0.001). HD-induced myocardial stunning is common, and may contribute to the development of heart failure and increased mortality in HD patients. Enhanced understanding of dialysis-induced cardiac injury may provide novel therapeutic targets to reduce currently excessive rates of cardiovascular morbidity and mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis.

            Patients with chronic kidney disease (stage 5) who undergo hemodialysis treatment have similarities to heart failure patients in that both populations retain fluid frequently and have excessively high mortality. Volume overload in heart failure is associated with worse outcomes. We hypothesized that in hemodialysis patients, greater interdialytic fluid gain is associated with poor all-cause and cardiovascular survival. We examined 2-year (July 2001 to June 2003) mortality in 34,107 hemodialysis patients across the United States who had an average weight gain of at least 0.5 kg above their end-dialysis dry weight by the time the subsequent hemodialysis treatment started. The 3-month averaged interdialytic weight gain was divided into 8 categories of 0.5-kg increments (up to > or =4.0 kg). Eighty-six percent of patients gained >1.5 kg between 2 dialysis sessions. In unadjusted analyses, higher weight gain was associated with better nutritional status (higher protein intake, serum albumin, and body mass index) and tended to be linked to greater survival. However, after multivariate adjustment for demographics (case mix) and surrogates of malnutrition-inflammation complex, higher weight-gain increments were associated with increased risk of all-cause and cardiovascular death. The hazard ratios (95% confidence intervals) of cardiovascular death for weight gain or =4.0 kg (compared with 1.5 to 2.0 kg as the reference) were 0.67 (0.58 to 0.76) and 1.25 (1.12 to 1.39), respectively. In hemodialysis patients, greater fluid retention between 2 subsequent hemodialysis treatment sessions is associated with higher risk of all-cause and cardiovascular death. The mechanisms by which fluid retention influences cardiovascular survival in hemodialysis may be similar to those in patients with heart failure and warrant further research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic Fluid Overload and Mortality in ESRD.

              Sustained fluid overload (FO) is considered a major cause of hypertension, heart failure, and mortality in patients with ESRD on maintenance hemodialysis. However, there has not been a cohort study investigating the relationship between chronic exposure to FO and mortality in this population. We studied the relationship of baseline and cumulative FO exposure over 1 year with mortality in 39,566 patients with incident ESRD in a large dialysis network in 26 countries using whole-body bioimpedance spectroscopy to assess fluid status. Analyses were applied across three discrete systolic BP (syst-BP) categories ( 160 mmHg), with nonoverhydrated patients with syst-BP=130-160 mmHg as the reference category; >200,000 FO measurements were performed over follow-up. Baseline FO value predicted excess risk of mortality across syst-BP categories ( 160 mmHg: HR, 1.30; 95% CI, 1.19 to 1.42; all P 160 mmHg: HR, 1.62; 95% CI, 1.39 to 1.90). In conclusion, chronic exposure to FO in ESRD is a strong risk factor for death across discrete BP categories. Whether treatment policies that account for fluid status monitoring are preferable to policies that account solely for predialysis BP measurements remains to be tested in a clinical trial.
                Bookmark

                Author and article information

                Journal
                J Bras Nefrol
                J Bras Nefrol
                jbn
                Jornal Brasileiro de Nefrologia
                Sociedade Brasileira de Nefrologia
                0101-2800
                2175-8239
                24 October 2019
                Oct-Dec 2019
                : 41
                : 4
                : 550-559
                Affiliations
                [1 ]Montpellier University, Montpellier, France.
                [2 ]Senior Medical Scientist, Global Medical Office, FMC Deutschland, Bad Homburg, Germany.
                [3 ]Head of Clinical Governance, NephroCare France, Fresnes, France.
                [4 ]Maastricht University Medical Center, Department of Internal Medicine, Division of Nephrology, Netherlands.
                [5 ]University of Minnesota, Minneapolis Minnesota, USA.
                [6 ]Senior Medical Scientist, Global Medical Office, FMC North America, Waltham, MA, USA.
                Author notes
                Correspondence to: Prof Bernard Canaud. E-mail: bernard.Canaud@ 123456fmc-ag.com

                Authors’ contributions

                Bernard Canaud, Charles Chazot, Jeroen P. Kooman, and Allan J. Collins contributed equally to the conception or design of the study; collection, analysis, or interpretation of data; writing or critical review of the manuscript; and final approval of the version to be published.

                Conflict of interest

                The authors declare that they have no conflict of interest related to the publication of this manuscript.

                Author information
                http://orcid.org/0000-0001-6854-2816
                Article
                10.1590/2175-8239-JBN-2019-0135
                6979572
                31661543
                41f8b4a1-4526-41bf-9438-ee5f5482df5f

                This is an open-access article distributed under the terms of the Creative Commons Attribution License

                History
                : 27 June 2019
                : 08 July 2019
                Categories
                Update Article

                water-electrolyte balance,hemodynamic monitoring,blood pressure,cardiovascular deconditioning,renal dialysis,treatment outcome,manejo hídrico e de sódio,monitorização hemodinâmica,pressão sanguínea,descondicionamento cardiovascular,hemodiálise,resultado do tratamento

                Comments

                Comment on this article