12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) \(\zeta\), which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Particle production during out-of-equilibrium phase transitions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Reheating after Inflation

            The theory of reheating of the Universe after inflation is developed. The transition from inflation to the hot Universe turns out to be strongly model-dependent and typically consists of several stages. Immediately after inflation the field \(\phi\) begins rapidly rolling towards the minimum of its effective potential. Contrary to some earlier expectations, particle production during this stage does not lead to the appearance of an extra friction term \(\Gamma\dot\phi\) in the equation of motion of the field \(\phi\). Reheating becomes efficient only at the next stage, when the field \(\phi\) rapidly oscillates near the minimum of its effective potential. We have found that typically in the beginning of this stage the classical inflaton field \(\phi\) very rapidly (explosively) decays into \(\phi\)-particles or into other bosons due to broad parametric resonance. This stage cannot be described by the standard elementary approach to reheating based on perturbation theory. The bosons produced at this stage, as well as some part of the classical field \(\phi\) which survives the stage of explosive reheating, should further decay into other particles, which eventually become thermalized. The last stages of decay can be described in terms of perturbation theory. Complete reheating is possible only in those theories where a single massive \(\phi\)-particle can decay into other particles. This imposes strong constraints on the structure of inflationary models. On the other hand, this means that a scalar field can be a cold dark matter candidate even if it is strongly coupled to other fields.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Towards the Theory of Reheating After Inflation

              Reheating after inflation occurs due to particle production by the oscillating inflaton field. In this paper we describe the perturbative approach to reheating, and then concentrate on effects beyond the perturbation theory. They are related to the stage of parametric resonance called preheating. It may occur in an expanding universe if the initial amplitude of oscillations of the inflaton field is large enough. We investigate a simple model of a massive inflaton field coupled to another scalar field X. Parametric resonance in this model is very broad. It occurs in a very unusual stochastic manner, which is different from the parametric resonance in the case when the expansion of the universe is neglected. Quantum fields interacting with the oscillating inflaton field experience a series of kicks which occur with phases uncorrelated to each other. We call this process stochastic resonance. We develop the theory of preheating taking into account the expansion of the universe and backreaction of produced particles, including the effects of rescattering. The process of preheating can be divided into several distinct stages. At the first stage the backreaction of created particles is not important. At the second stage backreaction increases the frequency of oscillations of the inflaton field, which makes the process even more efficient than before. Then the effects related to scattering of X-particles terminate the resonance. We calculate the density of X-particles and their quantum fluctuations with all backreaction effects taken into account. This allows us to find the range of masses and coupling constants for which one has efficient preheating. In particular, under certain conditions this process may produce particles with a mass much greater than the mass of the inflaton field.
                Bookmark

                Author and article information

                Journal
                19 July 2011
                2011-10-12
                Article
                10.1088/1475-7516/2011/11/028
                1107.3754
                421a7848-77da-4faa-955c-fa65974ebb33

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                JCAP 11 (2011) 028
                v2: 16 pages, 6 figures. Several references and 1 figure added
                astro-ph.CO hep-ph

                Comments

                Comment on this article