7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705.

      Molecular & Cellular Proteomics : MCP
      ATP-Binding Cassette Transporters, Amino Acids, metabolism, Bacterial Proteins, analysis, Bifidobacterium, chemistry, genetics, Electrophoresis, Gel, Two-Dimensional, Energy Metabolism, Fructose, Glucose, Glycolysis, Heat-Shock Proteins, Nucleotides, Open Reading Frames, Proteome, Proteomics, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comprehensive proteomic study was carried out to identify and characterize proteins expressed by Bifidobacterium longum NCC2705. A total of 708 spots representing 369 protein entries were identified by MALDI-TOF-MS and/or ESI-MS/MS. Isoelectric point values estimated by gel electrophoresis matched closely with their predicted ones, although some discrepancies exist suggesting that post-translational protein modifications might be common in B. longum. The identified proteins represent 21.4% of the predicted 1727 ORFs in the genome and correspond to 30% of the predicted proteome. Moreover 95 hypothetical proteins were experimentally identified. This is the first compilation of a proteomic reference map for the important probiotic organism B. longum NCC2705. The study aimed to define a number of cellular pathways related to important physiological processes at the proteomic level. Proteomic comparison of glucose- and fructose-grown cells revealed that fructose and glucose are catabolized via the same degradation pathway. Interestingly the sugar-binding protein specific to fructose (BL0033) and Frk showed higher levels of expression in cells grown on fructose than on glucose as determined by semiquantitative RT-PCR. BL0033 time course and concentration experiments showed that the induction time and fructose concentration correlates to increased expression of BL0033. At the same time, an ABC (ATP-binding cassette) transporter ATP-binding protein (BL0034) was slightly up-regulated in cells grown on fructose compared with glucose. All of the above results suggest that the uptake of fructose into the cell may be conducted by a specific transport system in which BL0033 might play an important role.

          Related collections

          Author and article information

          Comments

          Comment on this article