1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Keap-1/Nrf2 Signaling Pathway Is Activated by Oxidative Stress in Patients with Premature Rupture of Membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The potential mechanisms underlying premature rupture of membrane (PROM) is still unknown. The aim of this study was to determine the role of Keap-1/Nrf2 signaling pathway activation by oxidative stress in patients with preterm premature rupture of membranes.

          Material/Methods

          Placental tissues from preterm premature rupture of membranes (PPROM) (n=20), full-term premature rupture of membranes (FPROM) (n=20), and normal-term births (n=20) were collected and amniotic tissues were separated from the placental tissues from pregnant women at Shandong Provincial Qianfoshan Hospital. RT-PCR and Western blot were used to detect the levels of factors in the Keap-1/Nrf2 signaling pathway. To investigate the roles of Nrf2, we downregulated Nrf2 expression using siRNA in primary human amniotic epithelial (HAE) cells.

          Results

          Among the control group, FPROM group, and PPROM group, the reactive oxygen species (ROS) levels were significantly increased in the FPROM and PPROM groups. The differences indicated higher levels of oxidative stress in amniotic tissues with FPROM and PPROM after downregulation of si-Nrf2 in HAE cells. Antioxidants were lower in amniotic tissues with the FPROM group and PPROM group than in the control group. The antioxidant enzymes catalase (CAT), glutathione (GSH), glutathione peroxidase (GSHPx), and superoxide dismutases (SOD1 and SOD2) were examined in amniotic tissues. We found that the ROS levels were significantly increased after downregulation of si-Nrf2 compared with the control group. We found that the expression of Heme Oxygenase-1 (HO-1) and Glycogen Synthase Kinase-3b (GSK-3b), which is critical in the Keap-1/Nrf2 signaling pathway, increased significantly after downregulation of si-Nrf2 in HAE cells.

          Conclusions

          We found that increased ROS levels and decreased antioxidant enzymes in the PPROM and FPROM patients compared with the control group.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update.

          The Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1) nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway is one of the most important defense mechanisms against oxidative and/or electrophilic stresses, and it is closely associated with inflammatory diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and aging. In recent years, progress has been made in strategies aimed at modulating the Keap1-Nrf2-ARE pathway. The Nrf2 activator DMF (Dimethylfumarates) has been approved by the FDA as a new first-line oral drug to treat patients with relapsing forms of multiple sclerosis, while a phase 3 study of another promising candidate, CDDO-Me, was terminated for safety reasons. Directly inhibiting Keap1-Nrf2 protein-protein interactions as a novel Nrf2-modulating strategy has many advantages over using electrophilic Nrf2 activators. The development of Keap1-Nrf2 protein-protein interaction inhibitors has become a topic of intense research, and potent inhibitors of this target have been identified. In addition, inhibiting Nrf2 activity has attracted an increasing amount of attention because it may provide an alternative cancer therapy. This review summarizes the molecular mechanisms and biological functions of the Keap1-Nrf2-ARE system. The main focus of this review is on recent progress in studies of agents that target the Keap1-Nrf2-ARE pathway and the therapeutic applications of such agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway

            Traumatic brain injury (TBI) is a principal cause of death and disability worldwide. Melatonin, a hormone made by the pineal gland, is known to have anti-inflammatory and antioxidant properties. In this study, using a weight-drop model of TBI, we investigated the protective effects of ramelteon, a melatonin MT1/MT2 receptor agonist, and its underlying mechanisms of action. Administration of ramelteon (10 mg/kg) daily at 10:00 a.m. alleviated TBI-induced early brain damage on day 3 and long-term neurobehavioral deficits on day 28 in C57BL/6 mice. Ramelteon also increased the protein levels of interleukin (IL)-10, IL-4, superoxide dismutase (SOD), glutathione, and glutathione peroxidase and reduced the protein levels of IL-1β, tumor necrosis factor, and malondialdehyde in brain tissue and serum on days 1, 3, and 7 post-TBI. Similarly, ramelteon attenuated microglial and astrocyte activation in the perilesional cortex on day 3. Furthermore, ramelteon decreased Keap 1 expression, promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation, and increased levels of downstream proteins, including SOD-1, heme oxygenase-1, and NQO1 on day 3 post-TBI. However, in Nrf2 knockout mice with TBI, ramelteon did not decrease the lesion volume, neuronal degeneration, or myelin loss on day 3; nor did it mitigate depression-like behavior or most motor behavior deficits on day 28. Thus, timed ramelteon treatment appears to prevent inflammation and oxidative stress via the Nrf2-antioxidant response element pathway and might represent a potential chronotherapeutic strategy for treating TBI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hesperetin protects against H2O2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells.

              Age-related macular degeneration (AMD) is an irreversible vision loss disease that primarily results from oxidative stress that causes oxidative damage to the retinal pigment epithelial (RPE) cells. Hesperetin (Hesp) is a common flavanone glycoside compound that has been demonstrated to exhibit a variety of biological and pharmacological properties that include anti-inflammatory and antioxidant properties. The aim of this study is to explore the ability of Hesp to attenuate oxidative damage in hydrogen peroxide (H2O2)-stimulated ARPE-19 cells. The results indicated that Hesp treatment not only increased cell survival but also decreased reactive oxygen species (ROS) generation, whereas these roles were effectively enhanced the superoxide dismutase (SOD) and glutathione (GSH) levels, and reduced malondialdehyde (MDA) formation. Importantly, the level of heme oxygenase-1 (HO-1) expression was increased by Hesp exposure, which resulted in a decrease after the transfection of cells with Nrf2-siRNA. Additionally, further results revealed that Hesp treatment significantly elevated Keap-1 protein expression, Nrf2 nuclear translocation and ARE activities. These observations indicated that Hesp treatment effectively protected against H2O2-induced oxidative damage in ARPE-19 cells by inhibiting cell apoptosis, ROS overproduction and MDA formation as well as enhancing the SOD and GSH levels. The underlying mechanisms may be related to the activation of the Keap1-Nrf2/HO-1 signal pathway, which may provide biological evidence to further encourage the investigation of the protective effect of Hesp in AMD disease.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2020
                26 June 2020
                17 April 2020
                : 26
                : e921757-1-e921757-8
                Affiliations
                Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, P.R. China
                Author notes
                Corresponding Author: Zonghua Liu, e-mail: zuiaizhong@ 123456126.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                Ethics approval

                The study was approved by the Regional Ethics Review Board for Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated of Shandong First Medical University.

                Article
                921757
                10.12659/MSM.921757
                7339974
                32589628
                42e058a2-a975-4d7b-8b93-787d49bfaa25
                © Med Sci Monit, 2020

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International ( CC BY-NC-ND 4.0)

                History
                : 27 November 2019
                : 02 March 2020
                Categories
                Clinical Research

                fetal membranes, premature rupture,fetal research,oxidative stress

                Comments

                Comment on this article