2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Translational potential of long-term decreases in mitochondrial lipids in a mouse model of Gulf War Illness

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gulf War Illness (GWI) affects 25% of veterans from the 1990-1991 Gulf War (GW) and is accompanied by damage to the brain regions involved in memory processing. After twenty-five years, the chronic pathobiology of GWI is still unexplained. To address this problem, we examined the long-term consequences of GW exposures in an established GWI mouse model to identify biological processes that are relevant to the chronic symptoms of GWI. Three-month old male C57BL6 mice were exposed for 10days to GW agents (pyridostigmine bromide and permethrin). Barnes Maze testing conducted at 15- and 16-months post-exposure revealed learning and memory impairment. Immunohistochemical analyses showed astroglia and microglia activation in the hippocampi of exposed mice. Proteomic studies identified perturbation of mitochondria function and metabolomics data showed decreases in the Krebs cycle compounds, lactate, β-hydroxybutyrate and glycerol-3 phosphate in the brains of exposed mice. Lipidomics data showed decreases in fatty acids, acylcarnitines and phospholipids, including cardiolipins in the brains of exposed mice. Pilot biomarker studies showed that plasma from exposed mice and veterans with GWI had increases in odd-chain, and decreases in long-chain, acylcarnitines compared to their respective controls. Very long-chain acylcarnitines were decreased in veterans with GWI compared to controls. These studies suggest that mitochondrial lipid disturbances might be associated with GWI and that further investigation is required to determine its role in the pathophysiology of this illness. Targeting mitochondrial function may provide effective therapies for GWI, and that lipid abnormalities could serve as biomarkers of GWI.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity.

            Dysregulation of fatty acid oxidation (FAO) is recognized as important in the pathophysiology of obesity and insulin resistance (IR). However, demonstrating FAO defects in vivo in humans has entailed complex and invasive methodologies. Recently, the identification of genetic blocks in FAO has been vastly simplified by using tandem mass spectrometry (MS/MS) of dried bloodspots to specify acylcarnitine (AcylCN) alterations characteristic for each disorder. This technology has recently been applied to examine FAO alterations in human and animal models of obesity and type 2 diabetes mellitus (T2DM). This study focused on characterizing AcylCN profiles in human plasma from individuals with obesity and T2DM during fasting and insulin-stimulated conditions. Following an overnight fast, plasma was obtained from lean (n = 12), obese nondiabetic (n = 14), and T2DM (n = 10) participants and analyzed for AcylCN using MS/MS. Plasma samples were also obtained at the end of a 4-h insulin-stimulated euglycemic clamp. In obesity and T2DM, long-chain AcylCNs were similarly significantly increased in the fasted state; free-CN levels were also elevated. Additionally, T2DM subjects of comparable BMI had increased short- and medium-chain AcylCNs, both saturated and hydroxy, as well as increased C(4)-dicarboxylcarnitine (C(4)DC-CN) that correlated with an index of poor glycemic control (HbA(1c); r = 0.74; P < 0.0001). Insulin infusion reduced all species of plasma AcylCN but this reduction was blunted in T2DM. Plasma long-chain AcylCN species are increased in obesity and T2DM, suggesting that more fatty acids can enter mitochondria. In T2DM, many shorter species accumulate, suggesting that they have a generalized complex oxidation defect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acylcarnitines: role in brain.

              l-carnitine is present in mammalian cells as free carnitine and acylcarnitines. The acylcarnitine profile has been shown to be useful in identifying inborn errors of metabolism and to be altered under different metabolic conditions. While carnitine's most widely known function is its involvement in beta-oxidation of fatty acids, it may also have other roles in metabolism. The importance of acylcarnitines in tissues with high rates of beta-oxidation such as heart and muscle is intuitive. However, acylcarnitine and carnitine supplementation have resulted in beneficial effects in the treatment of various neurological diseases, even though fat is not the major fuel for brain. Recent data indicate new, multifactorial roles for acylcarnitines in neuroprotection. Brain acylcarnitines can function in synthesizing lipids, altering and stabilizing membrane composition, modulating genes and proteins, improving mitochondrial function, increasing antioxidant activity, and enhancing cholinergic neurotransmission. Currently a relatively small subset of acylcarnitines is usually investigated. More research is needed on the use of acylcarnitines in the treatment of neurological diseases using a list of acylcarnitines encompassing a wide range of these molecules. In summary, carnitine is not merely a cofactor in beta-oxidation, but rather it has many known and yet to be discovered functions in physiology.
                Bookmark

                Author and article information

                Journal
                Toxicology
                Toxicology
                Elsevier BV
                0300483X
                November 2016
                November 2016
                : 372
                : 22-33
                Article
                10.1016/j.tox.2016.10.012
                27931520
                43b4fe61-d0fe-41be-b56b-f8fa8eeef8b1
                © 2016

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content1,463

                Cited by31

                Most referenced authors813