8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Isochoric conditions enhance stability of metastable supercooled water

      , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supercooling has recently emerged as a highly promising, multi-scale technique for low-temperature preservation of organs and tissues, preventing damaging ice formation while requiring relatively low doses of added cryoprotectants. However, current supercooling techniques are not thermodynamically stable; mild agitations can cause rapid and destructive ice formation throughout the system, rendering them unsuitable for transportation and sharply limiting applicability outside the controlled laboratory environment. In this experimental study, we report a simple thermodynamic alteration to standard supercooling protocols, the use of constant-volume (isochoric) conditions, which substantially increases the stability of the system in the face of various macroscopic perturbations, including drop-impact, vibration, ultrasonication, and thermal fluctuation. We identify this effect as driven by a possible combination of thermodynamic and kinetic factors, including reduction of microscopic density fluctuations, elimination of the air–water interface, and significant resistance to cavitation.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications

          Drug discovery and development are hampered by high failure rates attributed to the reliance on non-human animal models employed during safety and efficacy testing. A fundamental problem in this inefficient process is that non-human animal models cannot adequately represent human biology. Thus, there is an urgent need for high-content in vitro systems that can better predict drug-induced toxicity. Systems that predict cardiotoxicity are of uppermost significance, as approximately one third of safety-based pharmaceutical withdrawals are due to cardiotoxicty. Here, we present a cardiac microphysiological system (MPS) with the attributes required for an ideal in vitro system to predict cardiotoxicity: i) cells with a human genetic background; ii) physiologically relevant tissue structure (e.g. aligned cells); iii) computationally predictable perfusion mimicking human vasculature; and, iv) multiple modes of analysis (e.g. biological, electrophysiological, and physiological). Our MPS is able to keep human induced pluripotent stem cell derived cardiac tissue viable and functional over multiple weeks. Pharmacological studies using the cardiac MPS show half maximal inhibitory/effective concentration values (IC50/EC50) that are more consistent with the data on tissue scale references compared to cellular scale studies. We anticipate the widespread adoption of MPSs for drug screening and disease modeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The promise of organ and tissue preservation to transform medicine

            The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasound-assisted crystallization (sonocrystallization)

              The positive influence of ultrasound (US) on crystallization processes is shown by the dramatic reduction of the induction period, supersaturation conditions and metastable zone width. Manipulation of this influence can be achieved by changing US-related variables such as frequency, intensity, power and even geometrical characteristics of the ultrasonic device (e.g. horn type size). The volume of the sonicated solution and irradiation time are also variables to be optimized in a case-by-case basis as the mechanisms of US action on crystallization remain to be established. Nevertheless, the results obtained so far make foreseeable that crystal size distribution, and even crystal shape, can be 'tailored' by appropriate selection of the sonication conditions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Applied Physics Letters
                AIP Publishing
                0003-6951
                1077-3118
                March 23 2020
                March 23 2020
                March 23 2020
                March 23 2020
                March 23 2020
                : 116
                : 12
                Article
                10.1063/1.5145334
                43da9479-a442-4a28-b9ff-9ce9717f2ba8
                © 2020
                History

                Comments

                Comment on this article