0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The fate of arsenic in rice plants (Oryza sativa L.): Influence of different forms of selenium

      , , , , , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

          Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies.

            Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arsenic uptake and metabolism in plants.

              Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.
                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                February 2021
                February 2021
                : 264
                : 128417
                Article
                10.1016/j.chemosphere.2020.128417
                33007565
                43dfee5d-a79c-4bc6-afe4-dae32192b0d4
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article