2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prehypertension exercise training attenuates hypertension and cardiac hypertrophy accompanied by temporal changes in the levels of angiotensin II and angiotensin (1-7)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system.

          Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1-7). Thus, the axis formed by ACE2/Ang-(1-7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT(1) receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1-7) and Mas with AT(1) and AT(2) receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exercise for Hypertension: A Prescription Update Integrating Existing Recommendations with Emerging Research

            Hypertension is the most common, costly, and preventable cardiovascular disease risk factor. Numerous professional organizations and committees recommend exercise as initial lifestyle therapy to prevent, treat, and control hypertension. Yet, these recommendations differ in the components of the Frequency, Intensity, Time, and Type (FITT) principle of exercise prescription (Ex Rx); the evidence upon which they are based is only of fair methodological quality; and the individual studies upon which they are based generally do not include people with hypertension, which are some of the limitations in this literature. The purposes of this review are to (1) overview the professional exercise recommendations for hypertension in terms of the FITT principle of Ex Rx; (2) discuss new and emerging research related to Ex Rx for hypertension; and (3) present an updated FITT Ex Rx for adults with hypertension that integrates the existing recommendations with this new and emerging research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The acute versus the chronic response to exercise.

              There is strong and consistent evidence that a single exercise session can acutely reduce triglycerides and increase high-density lipoprotein (HDL) cholesterol (HDL-C), reduce blood pressure, and improve insulin sensitivity and glucose homeostasis. Such observations suggest that at least some of the effects on atherosclerotic cardiovascular disease (ASCVD) risk factors attributed to exercise training may be the result of recent exercise. These acute and chronic exercise effects cannot be considered in isolation. Exercise training increases the capacity for exercise, thereby permitting more vigorous and/or more prolonged individual exercise sessions and a more significant acute effect. The intensity, duration, and energy expenditure required to produce these acute exercise effects are not clearly defined. The acute effect of exercise on triglycerides and HDL-C appears to increase with overall energy expenditure possibly because the effect maybe mediated by reductions in intramuscular triglycerides. Prolonged exercise appears necessary for an acute effect of exercise on low-density lipoprotein (LDL) cholesterol (LDL-C) levels. The acute effect of exercise on blood pressure is a low threshold phenomenon and has been observed after energy expenditures requiring only 40% maximal capacity. The acute effect of exercise on glucose metabolism appears to require exercise near 70% maximal, but this issue has not been carefully examined. Exercise has definite acute effects on blood lipids, blood pressure, and glucose homeostasis. Exercise also has acute effects on other factors related to atherosclerosis such as immunological function, vascular reactivity, and hemostasis. Considerable additional research is required to define the threshold of exercise required to produce these putatively beneficial effects.
                Bookmark

                Author and article information

                Journal
                Hypertension Research
                Hypertens Res
                Springer Science and Business Media LLC
                0916-9636
                1348-4214
                July 4 2019
                Article
                10.1038/s41440-019-0297-4
                43ea17d7-25dc-46d1-af51-b08187b51241
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article