6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AI-Assisted CBCT Data Management in Modern Dental Practice: Benefits, Limitations and Innovations

      , , , , , ,
      Electronics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Within the next decade, artificial intelligence (AI) will fundamentally transform the workflow of modern dental practice. This paper reviews the innovations and new roles of dental assistants in CBCT data management with the support of AI. Its use in 3D data management brings new roles for dental assistants. Cone beam computed tomography (CBCT) technology is, together with intraoral 3D scans and 3D facial scans, commonly used 3D diagnostic in a modern digital dental practice. This paper provides an overview of the potential benefits of AI implementation for semiautomated segmentations in standard medical diagnostic workflows in dental practice. It discusses whether AI tools can enable healthcare professionals to increase their reliability, effectiveness, and usefulness, and addresses the potential limitations and errors that may occur. The paper concludes that current AI solutions can improve current digital workflows including CBCT data management. Automated CBCT segmentation is one of the current trends and innovations. It can assist professionals in obtaining an accurate 3D image in a reduced period of time, thus enhancing the efficiency of the whole process. The segmentation of CBCT serves as a helpful tool for treatment planning as well as communicating the problem to the patient in an understandable way. This paper highlights a high bias risk due to the inadequate sample size and incomplete reporting in many studies. It proposes enhancing dental workflow efficiency and accuracy through AI-supported cbct data management

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            3D Deep Learning on Medical Images: A Review

            The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography

              To apply a deep-learning system for diagnosis of maxillary sinusitis on panoramic radiography, and to clarify its diagnostic performance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ELECGJ
                Electronics
                Electronics
                MDPI AG
                2079-9292
                April 2023
                April 04 2023
                : 12
                : 7
                : 1710
                Article
                10.3390/electronics12071710
                44179e90-9a33-4d1f-8426-2cd19a653ed1
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article