3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GDC-0941 activates integrin linked kinase (ILK) expression to cause resistance to GDC-0941 in breast cancer by the tumor necrosis factor (TNF)-α signaling pathway

      research-article
      , , , , , , ,
      Bioengineered
      Taylor & Francis
      Integrin-linked kinase (ILK), breast cancer, GDC-0941, AKT, drug resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Breast cancer is characterized by high morbidity and mortality. GDC-0941 is a PI3K inhibitor with oncogenic effects in breast cancer. However, certain breast cancer cells are insensitive to GDC-0941. Hence, the mechanism of GDC-0941 in breast cancer resistance was investigated in this study. Breast cancer cell lines BT-474, MCF7, Hs-578-T, MDA-MB-231, MDA-MB-453, and MDA-MB-468 were cultured in different medium and then treated with 100 or 500 nM GDC-0941, 100 nM OSU-T315, or TNF-α antibody. Moreover, ILK and shILK were transfected into cells. The half maximal inhibitory concentrations (IC50) for GDC-0941 were detected using CCK-8 assay. The levels of ILK, AKT, PDK1, S6, and p70S6K expression were detected using western blotting and qPCR. In addition, the mouse model of breast cancer was constructed to measure the tumor size, volume, and weight. The results showed that GDC-0941 decreased cell survival rate, downregulated the phosphorylation of AKT, S6, and p70S6K, and promoted the expression of ILK, while it had little effect on PDK1 expression. GDC-0941 inhibited the increases in p-AKT, p-S6, and p-p70S6K caused by ILK overexpression and promoted ILK knockdown-induced reduction of p-AKT, p-S6, and p-p70S6K. In addition, the combination of OSU-T315 and GDC-0941 decreased p-AKT, p-S6, and p-p70S6K level, tumor volume, and tumor weight. GDC-0941 promoted ILK expression by upregulating TNF-α level. Taken together, GDC-0941 increased ILK level by upregulating TNF-α, thus affecting AKT expression and the sensitivity of breast cancer cells to GDC-0941.

          Graphical Abstract

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor.

          Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four class I PI3K isoforms in biochemical assays with at least 50-fold selectivity against other protein kinases. The compound is also active against the most common somatic PI3Kα mutations but does not significantly inhibit the related class III (Vps34) and class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentration-dependent and pathway-specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. NVP-BKM120 behaves synergistically when combined with either targeted agents such as MEK or HER2 inhibitors or with cytotoxic agents such as docetaxel or temozolomide. The pharmacological, biologic, and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is undergoing phase II clinical trials in patients with cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase.

            Integrin-linked kinase (ILK) is an ankyrin-repeat containing serine-threonine protein kinase capable of interacting with the cytoplasmic domains of integrin beta1, beta2, and beta3 subunits. Overexpression of ILK in epithelial cells disrupts cell-extracellular matrix as well as cell-cell interactions, suppresses suspension-induced apoptosis (also called Anoikis), and stimulates anchorage-independent cell cycle progression. In addition, ILK induces nuclear translocation of beta-catenin, where the latter associates with a T cell factor/lymphocyte enhancer-binding factor 1 (TCF/LEF-1) to form an activated transcription factor. We now demonstrate that ILK activity is rapidly, but transiently, stimulated upon attachment of cells to fibronectin, as well as by insulin, in a phosphoinositide-3-OH kinase [Pi(3)K]-dependent manner. Furthermore, phosphatidylinositol(3,4,5)trisphosphate specifically stimulates the activity of ILK in vitro, and in addition, membrane targetted constitutively active Pi(3)K activates ILK in vivo. We also demonstrate here that ILK is an upstream effector of the Pi(3)K-dependent regulation of both protein kinase B (PKB/AKT) and glycogen synthase kinase 3 (GSK-3). Specifically, ILK can directly phosphorylate GSK-3 in vitro and when stably, or transiently, overexpressed in cells can inhibit GSK-3 activity, whereas the overexpression of kinase-deficient ILK enhances GSK-3 activity. In addition, kinase-active ILK can phosphorylate PKB/AKT on serine-473, whereas kinase-deficient ILK severely inhibits endogenous phosphorylation of PKB/AKT on serine-473, demonstrating that ILK is involved in agonist stimulated, Pi(3)K-dependent, PKB/AKT activation. ILK is thus a receptor-proximal effector for the Pi(3)K-dependent, extracellular matrix and growth factor mediated, activation of PKB/AKT, and inhibition of GSK-3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application.

              Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess unique self-renewal activity and mediate tumor initiation and propagation. The PI3K/Akt/mTOR signaling pathway can be considered as a master regulator for cancer. More and more recent studies have shown the links between PI3K/Akt/mTOR signaling pathway and CSC biology. Herein, we provide a comprehensive review on the role of signaling components upstream and downstream of PI3K/Akt/mTOR signaling in CSC. In addition, we also summarize various classes of small molecule inhibitors of PI3K/Akt/mTOR signaling pathway and their clinical potential in CSC. Overall, the current available data suggest that the PI3K/Akt/mTOR signaling pathway could be a promising target for development of CSC-target drugs.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                27 April 2022
                2022
                27 April 2022
                : 13
                : 4
                : 10944-10955
                Affiliations
                [0001]Department of Thyroid and Breast Diseases, Jincheng People’s Hospital; , Jincheng, Shanxi, China
                Author notes
                CONTACT Mingming Cheng 2313781979@ 123456qq.com Department of Thyroid and Breast Diseases, Jincheng People’s Hospital, No. 456 Wenchang East Street, Jincheng, Shanxi, China
                Pengcheng Gao pcgao4627@ 123456163.com Department of Thyroid and Breast Diseases, Jincheng People’s Hospital; Jincheng China
                Article
                2066758
                10.1080/21655979.2022.2066758
                9208486
                35477364
                4454af28-5f44-4ed9-b365-1ea5586e3681
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 6, References: 30, Pages: 12
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                integrin-linked kinase (ilk),breast cancer,gdc-0941,akt,drug resistance
                Biomedical engineering
                integrin-linked kinase (ilk), breast cancer, gdc-0941, akt, drug resistance

                Comments

                Comment on this article