3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mussel-Inspired Catechol-Functionalized Hydrogels and Their Medical Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mussel adhesive proteins (MAPs) have a unique ability to firmly adhere to different surfaces in aqueous environments via the special amino acid, 3,4-dihydroxyphenylalanine (DOPA). The catechol groups in DOPA are a key group for adhesive proteins, which is highly informative for the biomedical domain. By simulating MAPs, medical products can be developed for tissue adhesion, drug delivery, and wound healing. Hydrogel is a common formulation that is highly adaptable to numerous medical applications. Based on a discussion of the adhesion mechanism of MAPs, this paper reviews the formation and adhesion mechanism of catechol-functionalized hydrogels, types of hydrogels and main factors affecting adhesion, and medical applications of hydrogels, and future the development of catechol-functionalized hydrogels.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          The story of Bioglass.

          Historically the function of biomaterials has been to replace diseased or damaged tissues. First generation biomaterials were selected to be as bio-inert as possible and thereby minimize formation of scar tissue at the interface with host tissues. Bioactive glasses were discovered in 1969 and provided for the first time an alternative; second generation, interfacial bonding of an implant with host tissues. Tissue regeneration and repair using the gene activation properties of Bioglass provide a third generation of biomaterials. This article reviews the 40 year history of the development of bioactive glasses, with emphasis on the first composition, 45S5 Bioglass, that has been in clinical use since 1985. The steps of discovery, characterization, in vivo and in vitro evaluation, clinical studies and product development are summarized along with the technology transfer processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Five-year follow-up after clinical islet transplantation.

            Islet transplantation can restore endogenous beta-cell function to subjects with type 1 diabetes. Sixty-five patients received an islet transplant in Edmonton as of 1 November 2004. Their mean age was 42.9 +/- 1.2 years, their mean duration of diabetes was 27.1 +/- 1.3 years, and 57% were women. The main indication was problematic hypoglycemia. Forty-four patients completed the islet transplant as defined by insulin independence, and three further patients received >16,000 islet equivalents (IE)/kg but remained on insulin and are deemed complete. Those who became insulin independent received a total of 799,912 +/- 30,220 IE (11,910 +/- 469 IE/kg). Five subjects became insulin independent after one transplant. Fifty-two patients had two transplants, and 11 subjects had three transplants. In the completed patients, 5-year follow-up reveals that the majority ( approximately 80%) have C-peptide present post-islet transplant, but only a minority ( approximately 10%) maintain insulin independence. The median duration of insulin independence was 15 months (interquartile range 6.2-25.5). The HbA(1c) (A1C) level was well controlled in those off insulin (6.4% [6.1-6.7]) and in those back on insulin but C-peptide positive (6.7% [5.9-7.5]) and higher in those who lost all graft function (9.0% [6.7-9.3]) (P < 0.05). Those who resumed insulin therapy did not appear more insulin resistant compared with those off insulin and required half their pretransplant daily dose of insulin but had a lower increment of C-peptide to a standard meal challenge (0.44 +/- 0.06 vs. 0.76 +/- 0.06 nmol/l, P < 0.001). The Hypoglycemic score and lability index both improved significantly posttransplant. In the 128 procedures performed, bleeding occurred in 15 and branch portal vein thrombosis in 5 subjects. Complications of immunosuppressive therapy included mouth ulcers, diarrhea, anemia, and ovarian cysts. Of the 47 completed patients, 4 required retinal laser photocoagulation or vitrectomy and 5 patients with microalbuminuria developed macroproteinuria. The need for multiple antihypertensive medications increased from 6% pretransplant to 42% posttransplant, while the use of statin therapy increased from 23 to 83% posttransplant. There was no change in the neurothesiometer scores pre- versus posttransplant. In conclusion, islet transplantation can relieve glucose instability and problems with hypoglycemia. C-peptide secretion was maintained in the majority of subjects for up to 5 years, although most reverted to using some insulin. The results, though promising, still point to the need for further progress in the availability of transplantable islets, improving islet engraftment, preserving islet function, and reducing toxic immunosuppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acid pH in tumors and its potential for therapeutic exploitation.

              Measurement of pH in tissue has shown that the microenvironment in tumors is generally more acidic than in normal tissues. Major mechanisms which lead to tumor acidity probably include the production of lactic acid and hydrolysis of ATP in hypoxic regions of tumors. Further reduction in pH may be achieved in some tumors by administration of glucose (+/- insulin) and by drugs such as hydralazine which modify the relative blood flow to tumors and normal tissues. Cells have evolved mechanisms for regulating their intracellular pH. The amiloride-sensitive Na+/H+ antiport and the DIDS-sensitive Na+-dependent HCO3-/Cl- exchanger appear to be the major mechanisms for regulating pHi under conditions of acid loading, although additional mechanisms may contribute to acid extrusion. Mitogen-induced initiation of proliferation in some cells is preceded by cytoplasmic alkalinization, usually triggered by stimulation of Na+/H+ exchange; proliferation of other cells can be induced without prior alkalinization. Mutant cells which lack Na+/H+ exchange activity have reduced or absent ability to generate solid tumors; a plausible explanation is the failure of such mutant cells to withstand acidic conditions that are generated during tumor growth. Studies in tissue culture have demonstrated that the combination of hypoxia and acid pHe is toxic to mammalian cells, whereas short exposures to either factor alone are not very toxic. This interaction may contribute to cell death and necrosis in solid tumors. Acidic pH may influence the outcome of tumor therapy. There are rather small effects of pHe on the response of cells to ionizing radiation but acute exposure to acid pHe causes a marked increase in response to hyperthermia; this effect is decreased in cells that are adapted to low pHe. Acidity may have varying effects on the response of cells to conventional anticancer drugs. Ionophores such as nigericin or CCCP cause acid loading of cells in culture and are toxic only at low pHc; this toxicity is enhanced by agents such as amiloride or DIDS which impair mechanisms involved in regulation of pHi. It is suggested that acid conditions in tumors might allow the development of new and relatively specific types of therapy which are directed against mechanisms which regulate pHi under acid conditions.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                16 July 2019
                July 2019
                : 24
                : 14
                : 2586
                Affiliations
                [1 ]Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
                [2 ]Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
                Author notes
                [* ]Correspondence: huzhangqyx@ 123456126.com (Z.H.); puwangli@ 123456163.com (P.-W.L.); Tel.: +86-759-2383300 (Z.H.)
                Author information
                https://orcid.org/0000-0002-9311-1687
                Article
                molecules-24-02586
                10.3390/molecules24142586
                6680511
                31315269
                44b6e176-a0a0-472f-bde2-fc3abe3aad1d
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 May 2019
                : 13 July 2019
                Categories
                Review

                mussel adhesive protein,catechol,hydrogel,medical application

                Comments

                Comment on this article