3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesize palladium nanoparticles from the macroalgae Sargassum fusiforme: An eco-friendly tool in the fight against Plasmodium falciparum?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ProTox-II: a webserver for the prediction of toxicity of chemicals

          Abstract Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Molecular Docking and Structure-Based Drug Design Strategies

            Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases

              The discovery of various protein/receptor targets from genomic research is expanding rapidly. Along with the automation of organic synthesis and biochemical screening, this is bringing a major change in the whole field of drug discovery research. In the traditional drug discovery process, the industry tests compounds in the thousands. With automated synthesis, the number of compounds to be tested could be in the millions. This two-dimensional expansion will lead to a major demand for resources, unless the chemical libraries are made wisely. The objective of this work is to provide both quantitative and qualitative characterization of known drugs which will help to generate "drug-like" libraries. In this work we analyzed the Comprehensive Medicinal Chemistry (CMC) database and seven different subsets belonging to different classes of drug molecules. These include some central nervous system active drugs and cardiovascular, cancer, inflammation, and infection disease states. A quantitative characterization based on computed physicochemical property profiles such as log P, molar refractivity, molecular weight, and number of atoms as well as a qualitative characterization based on the occurrence of functional groups and important substructures are developed here. For the CMC database, the qualifying range (covering more than 80% of the compounds) of the calculated log P is between -0.4 and 5.6, with an average value of 2.52. For molecular weight, the qualifying range is between 160 and 480, with an average value of 357. For molar refractivity, the qualifying range is between 40 and 130, with an average value of 97. For the total number of atoms, the qualifying range is between 20 and 70, with an average value of 48. Benzene is by far the most abundant substructure in this drug database, slightly more abundant than all the heterocyclic rings combined. Nonaromatic heterocyclic rings are twice as abundant as the aromatic heterocycles. Tertiary aliphatic amines, alcoholic OH and carboxamides are the most abundant functional groups in the drug database. The effective range of physicochemical properties presented here can be used in the design of drug-like combinatorial libraries as well as in developing a more efficient corporate medicinal chemistry library.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                January 2023
                January 2023
                : 857
                : 159517
                Article
                10.1016/j.scitotenv.2022.159517
                4519b4e2-d461-4eef-b404-706dcc4dd9e4
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article