14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Graphene–organic hybrid electronics

      ,
      J. Mater. Chem. C
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-layer organic photovoltaic cell

          C. W. Tang (1986)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A high-mobility electron-transporting polymer for printed transistors.

            Printed electronics is a revolutionary technology aimed at unconventional electronic device manufacture on plastic foils, and will probably rely on polymeric semiconductors for organic thin-film transistor (OTFT) fabrication. In addition to having excellent charge-transport characteristics in ambient conditions, such materials must meet other key requirements, such as chemical stability, large solubility in common solvents, and inexpensive solution and/or low-temperature processing. Furthermore, compatibility of both p-channel (hole-transporting) and n-channel (electron-transporting) semiconductors with a single combination of gate dielectric and contact materials is highly desirable to enable powerful complementary circuit technologies, where p- and n-channel OTFTs operate in concert. Polymeric complementary circuits operating in ambient conditions are currently difficult to realize: although excellent p-channel polymers are widely available, the achievement of high-performance n-channel polymers is more challenging. Here we report a highly soluble ( approximately 60 g l(-1)) and printable n-channel polymer exhibiting unprecedented OTFT characteristics (electron mobilities up to approximately 0.45-0.85 cm(2) V(-1) s(-1)) under ambient conditions in combination with Au contacts and various polymeric dielectrics. Several top-gate OTFTs on plastic substrates were fabricated with the semiconductor-dielectric layers deposited by spin-coating as well as by gravure, flexographic and inkjet printing, demonstrating great processing versatility. Finally, all-printed polymeric complementary inverters (with gain 25-65) have been demonstrated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures.

              Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                JMCCCX
                J. Mater. Chem. C
                J. Mater. Chem. C
                Royal Society of Chemistry (RSC)
                2050-7526
                2050-7534
                2017
                2017
                : 5
                : 19
                : 4598-4613
                Article
                10.1039/C7TC00664K
                45540737-b626-4a27-b6a8-b02e12abf8d7
                © 2017
                History

                Comments

                Comment on this article