18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective Effects of Oligodendrocyte Progenitor Cell Transplantation in Premature Rat Brain following Hypoxic-Ischemic Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Abnormal cerebral structure is present at term in premature infants.

          Long-term studies of the outcome of very prematurely born infants have clearly documented that the majority of such infants have significant motor, cognitive, and behavioral deficits. However, there is a limited understanding of the nature of the cerebral abnormality underlying these adverse neurologic outcomes. The overall aim of this study was to define quantitatively the alterations in cerebral tissue volumes at term equivalent in a large longitudinal cohort study of very low birth weight premature infants in comparison to term-born infants by using advanced volumetric 3-dimensional magnetic resonance imaging (MRI) techniques. We also aimed to define any relationship of such perinatal lesions as white matter (WM) injury or other potentially adverse factors to the quantitative structural alterations. Additionally, we wished to identify the relationship of the structural alterations to short-term neurodevelopmental outcome. From November 1998 to December 2000, 119 consecutive premature infants admitted to the neonatal intensive care units at Christchurch Women's Hospital (Christchurch, New Zealand) and the Royal Women's Hospital (Melbourne, Australia) were recruited (88% of eligible) after informed parental consent to undergo an MRI scan at term equivalent. Twenty-one term-born infants across both sites were recruited also. Postacquisition advanced 3-dimensional tissue segmentation with 3-dimensional reconstruction was undertaken to estimate volumes of cerebral tissues: gray matter (GM; cortical and deep nuclear structures), WM (myelinated and unmyelinated), and cerebrospinal fluid (CSF). In comparison to the term-born infants, the premature infants at term demonstrated prominent reductions in cerebral cortical GM volume (premature infants [mean +/- SD]: 178 +/- 41 mL; term infants: 227 +/- 26 mL) and in deep nuclear GM volume (premature infants: 10.8 +/- 4.1 mL; term infants: 13.8 +/- 5.2 mL) and an increase in CSF volume (premature infants: 45.6 +/- 22.1 mL; term infants: 28.9 +/- 16 mL). The major predictors of altered cerebral volumes were gestational age at birth and the presence of cerebral WM injury. Infants with significantly reduced cortical GM and deep nuclear GM volumes and increased CSF volume volumes exhibited moderate to severe neurodevelopmental disability at 1 year of age. This MRI study of prematurely born infants further defines the nature of quantitative cerebral structural abnormalities present as early as term equivalent. The abnormalities particularly involve cerebral neuronal regions including both cortex and deep nuclear structures. The pattern of cerebral alterations is related most significantly to the degree of immaturity at birth and to concomitant WM injury. The alterations are followed by abnormal short-term neurodevelopmental outcome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain.

            To examine the role of gray and white matter niches for oligodendrocyte differentiation, we used homo- and heterotopic transplantations into the adult mouse cerebral cortex. White matter-derived cells differentiated into mature oligodendrocytes in both niches with equal efficiency, whereas gray matter-derived cells did not. Thus, white matter promotes oligodendrocyte differentiation, and cells from this niche differentiate more easily, even in the less supportive gray matter environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain.

              Both late-gestation and adult human forebrain contain large numbers of oligodendrocyte progenitor cells (OPCs). These cells may be identified by their A2B5(+)PSA-NCAM(-) phenotype (positive for the early oligodendrocyte marker A2B5 and negative for the polysialylated neural cell adhesion molecule). We used dual-color fluorescence-activated cell sorting (FACS) to extract OPCs from 21- to 23-week-old fetal human forebrain, and A2B5 selection to extract these cells from adult white matter. When xenografted to the forebrains of newborn shiverer mice, fetal OPCs dispersed throughout the white matter and developed into oligodendrocytes and astrocytes. By 12 weeks, the host brains showed extensive myelin production, compaction and axonal myelination. Isolates of OPCs derived from adult human white matter also myelinated shiverer mouse brain, but much more rapidly than their fetal counterparts, achieving widespread and dense myelin basic protein (MBP) expression by 4 weeks after grafting. Adult OPCs generated oligodendrocytes more efficiently than fetal OPCs, and ensheathed more host axons per donor cell than fetal cells. Both fetal and adult OPC phenotypes mediated the extensive and robust myelination of congenitally dysmyelinated host brain, although their differences suggested their use for different disease targets.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 March 2015
                2015
                : 10
                : 3
                : e0115997
                Affiliations
                [1 ]Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, 201102, China
                [2 ]Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
                [3 ]Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
                [4 ]Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
                [5 ]Institutes of Biomedical Sciences, Fudan University, Shanghai, China
                Massachusetts General Hospital/Harvard Medical School, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WZ JL GC. Performed the experiments: LC SM. Analyzed the data: PZ ZF. Contributed reagents/materials/analysis tools: MX YY ZQ. Wrote the paper: LC MX.

                Article
                PONE-D-14-37261
                10.1371/journal.pone.0115997
                4366232
                25790286
                4565347c-eea8-4ee6-b55c-5620445988d2
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 August 2014
                : 3 December 2014
                Page count
                Figures: 7, Tables: 0, Pages: 16
                Funding
                This study was supported by the National Natural Science Foundation of China (NO. 30901615).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article