36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LAMINA: a tool for rapid quantification of leaf size and shape parameters

      product-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          An increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process.

          Results

          We have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned.

          Conclusion

          We demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record.

          The sizes and shapes (physiognomy) of fossil leaves are widely applied as proxies for paleoclimatic and paleoecological variables. However, significant improvements to leaf-margin analysis, used for nearly a century to reconstruct mean annual temperature (MAT), have been elusive; also, relationships between physiognomy and many leaf ecological variables have not been quantified. Using the recently developed technique of digital leaf physiognomy, correlations of leaf physiognomy to MAT, leaf mass per area, and nitrogen content are quantified for a set of test sites from North and Central America. Many physiognomic variables correlate significantly with MAT, indicating a coordinated, convergent evolutionary response of fewer teeth, smaller tooth area, and lower degree of blade dissection in warmer environments. In addition, tooth area correlates negatively with leaf mass per area and positively with nitrogen content. Multiple linear regressions based on a subset of variables produce more accurate MAT estimates than leaf-margin analysis (standard errors of ±2 vs. ±3°C); improvements are greatest at sites with shallow water tables that are analogous to many fossil sites. The multivariate regressions remain robust even when based on one leaf per species, and the model most applicable to fossils shows no more signal degradation from leaf fragmentation than leaf-margin analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetics and genomics of the drought response in Populus.

            The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F(2)) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F(2) population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh.

              For genetic analysis of mechanisms of leaf morphogenesis, we chose Arabidopsis thaliana (L.) Heynh. as a model for leaf development in dicotyledonous plants. Leaves of the angustifolia mutant were the same length as but narrower and thicker than wild-type leaves. The total number of cells in leaf blades of angustifolia plants was the same as in the wild type. At the cellular level in the angustifolia mutant it was found that the cells were smaller in the leaf-width direction and larger in the leaf-thickness direction than in wild type, revealing the function of the ANGUSTIFOLIA gene, which is to control leaf morphology by regulating polarity-specific cell elongation. The existence of similar genes that regulate leaf development in the length direction was, therefore, predicted. Three loci and several alleles associated with short-leaved mutants were newly isolated as rotundifolia mutants. The rotundifolia3 mutant had the same number of cells as the wild type, with reduced cell elongation in the leaf-length direction. The features of the angustifolia rotundifolia3 double mutant indicated that ANGUSTIFOLIA and ROTUNDIFOLIA3 genes act independently. We propose that leaf expansion in Arabidopsis involves at least two independent developmental processes: width development and length development, with the ANGUSTIFOLIA and ROTUNDIFOLIA3 genes playing different polarity-specific roles in cell elongation.
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2008
                22 July 2008
                : 8
                : 82
                Affiliations
                [1 ]Research Group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
                [2 ]CNAP Artemisia Research Project, Centre for Novel Agricultural Products, Department of Biology, PO Box 373, York, YO10 5YW, UK
                [3 ]Department of Forest Sciences, 2424, Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
                [4 ]Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
                Article
                1471-2229-8-82
                10.1186/1471-2229-8-82
                2500018
                18647399
                456e2f4c-265b-460f-8e8a-9b9f89f058cc
                Copyright © 2008 Bylesjö et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 May 2008
                : 22 July 2008
                Categories
                Software

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article