38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy.

      Journal of clinical oncology : official journal of the American Society of Clinical Oncology
      Adult, Antineoplastic Combined Chemotherapy Protocols, adverse effects, therapeutic use, Bone Marrow Cells, Breast Neoplasms, drug therapy, Cell Culture Techniques, methods, Dose-Response Relationship, Drug, Female, Graft Survival, Hematopoietic Stem Cell Transplantation, Humans, Mesoderm, cytology, Middle Aged, Neutropenia, therapy, Transplantation, Autologous

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multipotential mesenchymal stem cells (MSCs) are found in human bone marrow and are shown to secrete hematopoietic cytokines and support hematopoietic progenitors in vitro. We hypothesized that infusion of autologous MSCs after myeloablative therapy would facilitate engraftment by hematopoietic stem cells, and we investigated the feasibility, safety, and hematopoietic effects of culture-expanded MSCs in breast cancer patients receiving autologous peripheral-blood progenitor-cell (PBPC) infusion. We developed an efficient method of isolating and culture-expanding a homogenous population of MSCs from a small marrow-aspirate sample obtained from 32 breast cancer patients. Twenty-eight patients were given high-dose chemotherapy and autologous PBPCs plus culture-expanded MSC infusion and daily granulocyte colony-stimulating factor. Human MSCs were successfully isolated from a mean +/- SD of 23.4 +/- 5.9 mL of bone marrow aspirate from all patients. Expansion cultures generated greater than 1 x 10(6) MSCs/kg for all patients over 20 to 50 days with a mean potential of 5.6 to 36.3 x 10(6) MSCs/kg after two to six passages, respectively. Twenty-eight patients were infused with 1 to 2.2 x 10(6) expanded autologous MSCs/kg intravenously over 15 minutes. There were no toxicities related to the infusion of MSCs. Clonogenic MSCs were detected in venous blood up to 1 hour after infusion in 13 of 21 patients (62%). Median time to achieve a neutrophil count greater than 500/microL and platelet count >/= 20,000/microL untransfused was 8 days (range, 6 to 11 days) and 8.5 days (range, 4 to 19 days), respectively. This report is the first describing infusion of autologous MSCs with therapeutic intent. We found that autologous MSC infusion at the time of PBPC transplantation is feasible and safe. The observed rapid hematopoietic recovery suggests that MSC infusion after myeloablative therapy may have a positive impact on hematopoiesis and should be tested in randomized trials.

          Related collections

          Author and article information

          Comments

          Comment on this article