16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hydrogen bonds to Au atoms in coordinated gold clusters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well known that various transition elements can form M···H hydrogen bonds. However, for gold, there has been limited decisive experimental evidence of such attractive interactions. Herein we demonstrate an example of spectroscopically identified hydrogen bonding interaction of C–H units to Au atoms in divalent hexagold clusters ([Au 6] 2+) decorated by diphosphine ligands. X-ray crystallography reveals substantially short Au–H/Au–C distances to indicate the presence of attractive interactions involving unfunctionalized C–H moieties. Solution 1H and 13C NMR signals of the C–H units appear at considerably downfield regions, indicating the hydrogen-bond character of the interactions. The Au···H interactions are critically involved in the ligand-cluster interactions to affect the stability of the cluster framework. This work demonstrates the uniqueness and potential of partially oxidised Au cluster moieties to participate in non-covalent interaction with various organic functionalities, which would expand the scope of gold clusters.

          Abstract

          Many transition metals can form hydrogen bonds to organic species, but experimental evidence for Au is still lacking. Here, the authors obtain crystallographic and NMR spectroscopic evidence of hydrogen bonding between C-H groups and Au atoms of gold clusters, suggesting that non-covalent interactions may play a role in gold cluster catalysis.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of active gold nanoclusters on iron oxide supports for CO oxidation.

          Gold nanocrystals absorbed on metal oxides have exceptional properties in oxidation catalysis, including the oxidation of carbon monoxide at ambient temperatures, but the identification of the active catalytic gold species among the many present on real catalysts is challenging. We have used aberration-corrected scanning transmission electron microscopy to analyze several iron oxide-supported catalyst samples, ranging from those with little or no activity to others with high activities. High catalytic activity for carbon monoxide oxidation is correlated with the presence of bilayer clusters that are approximately 0.5 nanometer in diameter and contain only approximately 10 gold atoms. The activity of these bilayer clusters is consistent with that demonstrated previously with the use of model catalyst systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A unified view of ligand-protected gold clusters as superatom complexes.

            Synthesis, characterization, and functionalization of self-assembled, ligand-stabilized gold nanoparticles are long-standing issues in the chemistry of nanomaterials. Factors driving the thermodynamic stability of well documented discrete sizes are largely unknown. Herein, we provide a unified view of principles that underlie the stability of particles protected by thiolate (SR) or phosphine and halide (PR(3), X) ligands. The picture has emerged from analysis of large-scale density functional theory calculations of structurally characterized compounds, namely Au(102)(SR)(44), Au(39)(PR(3))(14)X(6)(-), Au(11)(PR(3))(7)X(3), and Au(13)(PR(3))(10)X(2)(3+), where X is either a halogen or a thiolate. Attributable to a compact, symmetric core and complete steric protection, each compound has a filled spherical electronic shell and a major energy gap to unoccupied states. Consequently, the exceptional stability is best described by a "noble-gas superatom" analogy. The explanatory power of this concept is shown by its application to many monomeric and oligomeric compounds of precisely known composition and structure, and its predictive power is indicated through suggestions offered for a series of anomalously stable cluster compositions which are still awaiting a precise structure determination.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Definition of the hydrogen bond (IUPAC Recommendations 2011)

                Bookmark

                Author and article information

                Contributors
                konishi@ees.hokudai.ac.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                18 September 2017
                18 September 2017
                2017
                : 8
                : 576
                Affiliations
                [1 ]ISNI 0000 0001 2173 7691, GRID grid.39158.36, Faculty of Environmental Earth Science, , Hokkaido University, ; Sapporo, Hokkaido 060-0810 Japan
                [2 ]ISNI 0000 0001 2173 7691, GRID grid.39158.36, Graduate School of Environmental Science, , Hokkaido University, ; Sapporo, Hokkaido 060-0810 Japan
                Author information
                http://orcid.org/0000-0003-3445-3625
                Article
                720
                10.1038/s41467-017-00720-3
                5603579
                28924211
                462a0e89-055a-4866-bd7e-193aa41ae6ff
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 April 2017
                : 24 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article