7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influence of fourth generation poly(propyleneimine) dendrimers on blood cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis.

          A comparative in vitro cytotoxicity study with different water-soluble, cationic macromolecules which have been described as gene delivery systems was performed. Cytotoxicity in L929 mouse fibroblasts was monitored using the MTT assay and the release of the cytosolic enzyme lactate dehydrogenase (LDH). Microscopic observations were carried out as indicators for cell viability. Furthermore, hemolysis of erythrocytes was quantified spectrophotometrically. To determine the nature of cell death induced by the polycations, the nuclear morphology after DAPI staining and the inhibition of the toxic effects by the caspase inhibitor zVAD.fmk were investigated. All assays yielded comparable results and allowed the following ranking of the polymers with regard to cytotoxicity: Poly(ethylenimine)=poly(L-lysine)>poly(diallyl-dimethyl-ammonium chloride)>diethylaminoethyl-dextran>poly(vinyl pyridinium bromide)>Starburst dendrimer>cationized albumin>native albumin. The magnitude of the cytotoxic effects of all polymers were found to be time- and concentration dependent. The molecular weight as well as the cationic charge density of the polycations were confirmed as key parameters for the interaction with the cell membranes and consequently, the cell damage. Evaluating the nature of cell death induced by poly(ethylenimine), we did not detect any indication for apoptosis suggesting that the polymer induced a necrotic cell reaction. Cell nuclei retained their size, chromatin was homogenously distributed and cell membranes lost their integrity very rapidly at an early stage. Furthermore, the broad spectrum caspase inhibitor zVAD.fmk did not inhibit poly(ethylenimine)-induced cell damage. Insights into the structure-toxicity relationship are necessary to optimize the cytotoxicity and biocompatibility of non-viral gene delivery systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dendrimers in drug research.

            Dendrimers are versatile, derivatisable, well-defined, compartmentalised chemical polymers with sizes and physicochemical properties resembling those of biomolecules e.g. proteins. The present critical review (citing 158 references) briefly describes dendrimer design, nomenclature and divergent/convergent dendrimer synthesis. The characteristic physicochemical features of dendrimers are highlighted, showing the effect of solvent pH and polarity on their spatial structure. The use of dendrimers in biological systems are reviewed, with emphasis on the biocompatibility of dendrimers, such as in vitro and in vivo cytotoxicity, as well as biopermeability, biostability and immunogenicity. The review deals with numerous applications of dendrimers as tools for efficient multivalent presentation of biological ligands in biospecific recognition, inhibition and targeting. Dendrimers may be used as drugs for antibacterial and antiviral treatment and have found use as antitumor agents. The review highlights the use of dendrimers as drug or gene delivery devices in e.g. anticancer therapy, and the design of different host-guest binding motifs directed towards medical applications is described. Other specific examples are the use of dendrimers as 'glycocarriers' for the controlled multimeric presentation of biologically relevant carbohydrate moieties which are useful for targeting modified tissue in malignant diseases for diagnostic and therapeutic purposes. Finally, the use of specific types of dendrimers as scaffolds for presenting vaccine antigens, especially peptides, for use in vaccines is presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Lymphocyte responses and cytokines.

                Bookmark

                Author and article information

                Journal
                Journal of Biomedical Materials Research Part A
                J. Biomed. Mater. Res.
                Wiley
                15493296
                November 2012
                November 2012
                May 24 2012
                : 100A
                : 11
                : 2870-2880
                Article
                10.1002/jbm.a.34222
                46401e10-ed70-400f-8d27-10afc3a2d073
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article