9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SPR sensing of bisphenol A using molecularly imprinted nanoparticles immobilized on slab optical waveguide with consecutive parallel Au and Ag deposition bands coexistent with bisphenol A-immobilized Au nanoparticles.

      Langmuir
      Aniline Compounds, chemistry, Benzhydryl Compounds, Gold, Metal Nanoparticles, Molecular Imprinting, methods, Optical Processes, Phenols, analysis, Silver, Surface Plasmon Resonance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A slab-type optical waveguide (s_OWG)-based microfluidic SPR measurement system for bisphenol A was developed. This s_OWG possesses consecutive parallel gold and silver deposition bands in the line of plasmon flow, allowing two individual SPR signals to be independently obtained as a result of the difference in resonant reflection spectra of these metals. As a molecular recognition element, molecularly imprinted polymer nanoparticles (MIP-Np) were employed and immobilized on the surface of each of the gold and silver deposition bands. The resonant reflection spectra were measured on the MIP-Np-immobilized consecutive parallel gold and silver deposition bands coexistent with BPA-AuNp. The Ag-based SPR spectra showed a red shift (0.7 nm) when free BPA (0.1 mM) was passed over the BPA-AuNp/immobilized MIP-Np complexes formed on the s_OWG, unlike the case for the Au deposition band, while a large excess of BPA induced a blue shift due to the competitive desorption of BPA-AuNp from the immobilized MIP-Np on the s_OWG. By using the proposed detection system, binding events of other small molecules could be monitored in conjunction with the use of MIP-Np and labeled-AuNp.

          Related collections

          Author and article information

          Comments

          Comment on this article