0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lodging resistance and feeding quality of triticale and cereal rye lines in an alpine pastoral area of P. R. China

      1 , 1 , 1 , 1
      Agronomy Journal
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat

            Increasing plant density is one of the most efficient ways of increasing wheat (Triticum aestivum L.) grain production. However, overly dense plant populations have an increased risk of lodging. We examined lignin deposition during wheat stem development and the regulatory effects of plant density using the wheat cultivars shannong23 and weimai8. Plants were cultivated at densities of 75, 225 and 375 plants per m2 during two growing seasons. Our results showed that decreasing plant density enhanced culm quality, as revealed by increased culm diameter, wall thickness and dry weight per unit length, and improved the structure of sclerenchyma and vascular bundles by increasing lignification. In addition, more lignins were deposited in the secondary cell walls, resulting in strong lodging resistance. The guaiacyl unit was the major component of lignin and there was a higher content of the syringyl unit than that of the hydroxybenzyl unit. Furthermore, we hypothesised that the syringyl unit may correlate with stem stiffness. We describe here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of stem breaking strength by plant density, particularly the effect of plant density on lignin biosynthesis and its relationship with lodging resistance in wheat.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antagonistic regulation of the gibberellic acid response during stem growth in rice

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Agronomy Journal
                Agronomy Journal
                Wiley
                0002-1962
                1435-0645
                March 2022
                March 14 2022
                March 2022
                : 114
                : 2
                : 1284-1297
                Affiliations
                [1 ]College of Grassland Science Gansu Agricultural Univ. No. 1, Yingmeng Village, Anning district Lanzhou 730070 China
                Article
                10.1002/agj2.21012
                4685fe97-519d-472e-a731-a1a384ca251e
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article