81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS) and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.

          Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and cancer: an overview.

            Reactive species, which mainly include reactive oxygen species (ROS), are products generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. In normal cells, low-level concentrations of these compounds are required for signal transduction before their elimination. However, cancer cells, which exhibit an accelerated metabolism, demand high ROS concentrations to maintain their high proliferation rate. Different ways of developing ROS resistance include the execution of alternative pathways, which can avoid large amounts of ROS accumulation without compromising the energy demand required by cancer cells. Examples of these processes include the guidance of the glycolytic pathway into the pentose phosphate pathway (PPP) and/or the generation of lactate instead of employing aerobic respiration in the mitochondria. Importantly, ROS levels can be used as a thermostat to monitor the damage that cells can bear. The implications for ROS regulation are highly significant for cancer therapy because commonly used radio- and chemotherapeutic drugs influence tumor outcome through ROS modulation. Moreover, the discovery of novel biomarkers that are able to predict the clinical response to pro-oxidant therapies is a crucial challenge to overcome to allow for the personalization of cancer therapies. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radical causes of cancer.

              Free radicals are ubiquitous in our body and are generated by normal physiological processes, including aerobic metabolism and inflammatory responses, to eliminate invading pathogenic microorganisms. Because free radicals can also inflict cellular damage, several defences have evolved both to protect our cells from radicals--such as antioxidant scavengers and enzymes--and to repair DNA damage. Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved. In particular, we highlight the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                22 September 2016
                : 2016
                : 7432797
                Affiliations
                1Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
                2University of the Chinese Academy of Sciences, Beijing 10008, China
                3Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410000, China
                4UMR 914 INRA/Agro Paris Tech, Nutrition Physiology and Ingestive Behavior, Paris, France
                5Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
                Author notes

                Academic Editor: Vasantha Rupasinghe

                Author information
                http://orcid.org/0000-0003-0138-1530
                Article
                10.1155/2016/7432797
                5055983
                27738491
                46a37500-049e-47f0-b0ea-66c6ed054024
                Copyright © 2016 Tarique Hussain et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 March 2016
                : 16 August 2016
                : 21 August 2016
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 31330075
                Award ID: 31560640
                Award ID: 31372326
                Award ID: 31672433
                Award ID: 31301989
                Funded by: National Science and Technology Ministry
                Award ID: 2014BAD08B11
                Funded by: Science and Technology Department of Hunan Province
                Award ID: 2015JC3126
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article