20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A quantitative analysis of the acidosis of cardiac arrest: a prospective observational study

      research-article
      1 , , 2 , 3 , 4
      Critical Care
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Metabolic acidosis is common in patients with cardiac arrest and is conventionally considered to be essentially due to hyperlactatemia. However, hyperlactatemia alone fails to explain the cause of metabolic acidosis. Recently, the Stewart–Figge methodology has been found to be useful in explaining and quantifying acid–base changes in various clinical situations. This novel quantitative methodology might also provide useful insight into the factors responsible for the acidosis of cardiac arrest. We proposed that hyperlactatemia is not the sole cause of cardiac arrest acidosis and that other factors participate significantly in its development.

          Methods

          One hundred and five patients with out-of-hospital cardiac arrest and 28 patients with minor injuries (comparison group) who were admitted to the Emergency Department of a tertiary hospital in Tokyo were prospectively included in this study. Serum sodium, potassium, ionized calcium, magnesium, chloride, lactate, albumin, phosphate and blood gases were measured as soon as feasible upon arrival to the emergency department and were later analyzed using the Stewart–Figge methodology.

          Results

          Patients with cardiac arrest had a severe metabolic acidosis (standard base excess -19.1 versus -1.5; P < 0.0001) compared with the control patients. They were also hyperkalemic, hypochloremic, hyperlactatemic and hyperphosphatemic. Anion gap and strong ion gap were also higher in cardiac arrest patients. With the comparison group as a reference, lactate was found to be the strongest determinant of acidosis (-11.8 meq/l), followed by strong ion gap (-7.3 meq/l) and phosphate (-2.9 meq/l). This metabolic acidosis was attenuated by the alkalinizing effect of hypochloremia (+4.6 meq/l), hyperkalemia (+3.6 meq/l) and hypoalbuminemia (+3.5 meq/l).

          Conclusion

          The cause of metabolic acidosis in patients with out-of-hospital cardiac arrest is complex and is not due to hyperlactatemia alone. Furthermore, compensating changes occur spontaneously, attenuating its severity.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The role of serum proteins in acid-base equilibria.

          Serum proteins act as weak acids and participate in acid-base balance. Their effects are imprecisely quantified; in particular, the roles of albumin and globulins need reevaluation. We approached the problem in three steps. First, in artificial solutions resembling serum but with human serum albumin as the only protein moiety, we varied the strong ion difference (SID), partial pressure of carbon dioxide (Pco2) and the concentration of albumin [( Alb]) and fixed the concentration of inorganic phosphate [( Pi]). We measured pH and derived the charges on albumin. Second, extending the work of Stewart (Stewart PA. How to understand acid-base. A quantitative acid-base primer for biology and medicine. New York: Elsevier, 1981:1-286), we developed a mathematical model that solves for pH and for the charges on albumin as functions of SID, Pco2, [Pi], and [Alb]. The calculated values fit the observed values well; that is, the model describes well the behavior of these solutions over a wide range of simulated complex acid-base disturbances. Finally, in human serum samples containing both albumin and globulins, we varied SID, Pco2, and total protein concentration [( TP]); we fixed [Pi] and then measured pH and derived the charges on proteins as above. When we applied to these data the computer model developed for albumin alone, the calculated pH and derived charges on albumin values agreed well with the observed pH and derived charges on proteins. We conclude first that human serum globulins play a negligible role in acid-base equilibria, and second, that in normal human serum at pH 7.40 with [TP] = 7 and [Alb] = 4.3 gm/dl, the charges attributed to proteins are approximately 12 mEq/L; this is substantially less than the value of approximately 17 mEq/L given by many contemporary texts, based on work of van Slyke et al. (van Slyke DD, Hastings AB, Hiller A, Sendroy J Jr. Studies of gas and electrolyte equilibria in blood. XIV. Amounts of alkali bound by serum albumin and globulin. J Biol Chem 1928;79:769-80). These findings should be considered when evaluating acid-base balance in patients with abnormal serum albumin concentration, for example, when interpreting values of the anion gap.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis.

            The development of metabolic acidosis during cardiopulmonary bypass (CPB) is well recognized but poorly understood. The authors hypothesized that the delivery of pump prime fluids is primarily responsible for its development. Accordingly, acid-base changes induced by the establishment of CPB were studied using two types of priming fluid (Haemaccel, a polygeline solution, and Ringer's Injection vs. Plasmalyte 148) using quantitative biophysical methods. A prospective, double-blind, randomized trial was conducted at a tertiary institution with 22 patients undergoing CPB for coronary artery bypass surgery. Sampling of arterial blood was performed at three time intervals: before CPB (t1), 2 min after initiation of CPB at full flows (t2), and at the end of the case (t3). Measurements of Na+, K+, Mg2+, Cl-, HCO3-, phosphate, Ca2+, albumin, lactate, and arterial blood gases at each collection point were performed. Results were analyzed in a quantitative manner. Immediately on delivery of pump prime fluids, all patients developed a metabolic acidosis (base excess: 0. 95 mEq/l (t1) to -3.65 mEq/l (t2) (P < 0.001) for Haemaccel-Ringer's and 1.17 mEq/l (t1) to -3.20 mEq/l (t2). The decrease in base excess was the same for both primes (-4.60 vs. -4.37; not significant). However, the mechanism of metabolic acidosis was different. With the Haemaccel-Ringer's prime, the metabolic acidosis was hyperchloremic (Delta Cl-, +9.50 mEq/l; confidence interval, 7.00-11.50). With Plasmalyte 148, the acidosis was induced by an increase in unmeasured anions, most probably acetate and gluconate. The resolution of these two processes was different because the excretion of chloride was slower than that of the unmeasured anions (Delta base excess from t1 to t3 = -1.60 for Haemaccel-Ringer's vs. +1.15 for Plasmalyte 148; P = 0.0062). Cardiopulmonary bypass-induced metabolic acidosis appears to be iatrogenic in nature and derived from the effect of pump prime fluid on acid-base balance. The extent of such acidosis and its duration varies according to the type of pump prime.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Part 1: Introduction to the International Guidelines 2000 for CPR and ECC : a consensus on science.

              (2000)
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                2005
                23 May 2005
                : 9
                : 4
                : R357-R362
                Affiliations
                [1 ]Staff specialist in emergency, Tertiary Emergency Medical Center, Tokyo Metropolitan Bokuto Hospital, Tokyo, Japan
                [2 ]Staff specialist in intensive care, Department of Emergency and Critical Care Medicine, Saitama Medical Center, Saitama Medical School, Saitama, Japan
                [3 ]Staff specialist in intensive care, Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama, Japan
                [4 ]Director of intensive care research, Department of Intensive Care and Department of Medicine, Austin & Repatriation Medical Centre, Melbourne, Australia
                Article
                cc3714
                10.1186/cc3714
                1269443
                16137348
                46e64876-4cef-411c-b40d-0aa395dbc3ad
                Copyright © 2005 Makino et al. licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2005
                : 22 February 2005
                : 27 March 2005
                : 25 April 2005
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article