7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Metaphysics of D-CTCs: On the Underlying Assumptions of Deutsch's Quantum Solution to the Paradoxes of Time Travel

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          I argue that Deutsch's model for the behavior of systems traveling around closed timelike curves (CTCs) relies implicitly on a substantive metaphysical assumption. Deutsch is employing a version of quantum theory with a significantly supplemented ontology of parallel existent worlds, which differ in kind from the many worlds of the Everett interpretation. Standard Everett does not support the existence of multiple identical copies of the world, which the D-CTC model requires. This has been obscured because he often refers to the branching structure of Everett as a "multiverse", and describes quantum interference by reference to parallel interacting definite worlds. But he admits that this is only an approximation to Everett. The D-CTC model, however, relies crucially on the existence of a multiverse of parallel interacting worlds. Since his model is supplemented by structures that go significantly beyond quantum theory, and play an ineliminable role in its predictions and explanations, it does not represent a quantum solution to the paradoxes of time travel.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Article: not found

          The structure of the multiverse

          D Deutsch (2002)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Interactions with Closed Timelike Curves and Superluminal Signaling

            There is now a significant body of results on quantum interactions with closed timelike curves (CTCs) in the quantum information literature, for both the Deutsch model of CTC interactions (D-CTCs) and the projective model (P-CTCs). As a consequence, there is a prima facie argument exploiting entanglement that CTC interactions would enable superluminal and, indeed, effectively instantaneous signaling. In cases of spacelike separation between the sender of a signal and the receiver, whether a receiver measures the local part of an entangled state or a disentangled state to access the signal can depend on the reference frame. We propose a consistency condition that gives priority to either an entangled perspective or a disentangled perspective in spacelike separated scenarios. For D-CTC interactions, the consistency condition gives priority to frames of reference in which the state is disentangled, while for P-CTC interactions the condition selects the entangled state. Using the consistency condition, we show that there is a procedure that allows Alice to signal to Bob in the past via relayed superluminal communications between spacelike separated Alice and Clio, and spacelike separated Clio and Bob. This opens the door to time travel paradoxes in the classical domain. Ralph (arXiv:1107.4675) first pointed this out for P-CTCs, but we show that Ralph's procedure for a 'radio to the past' is flawed. Since both D-CTCs and P-CTCs allow classical information to be sent around a spacetime loop, it follows from a result by Aaronson and Watrous (Proc.Roy.Soc.A, 465:631-647 (2009)) for CTC-enhanced classical computation that a quantum computer with access to P-CTCs would have the power of PSPACE, equivalent to a D-CTC-enhanced quantum computer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Apart from Universes

                Bookmark

                Author and article information

                Journal
                2015-10-09
                2016-01-18
                Article
                1510.02742
                47158e3c-e993-4ceb-83a4-f0eec046897e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                quant-ph physics.hist-ph

                Quantum physics & Field theory,History of physics
                Quantum physics & Field theory, History of physics

                Comments

                Comment on this article