7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Design of 4D‐Printed Hygromorphs: State‐of‐the‐Art and Future Challenges

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Double-slit photoelectron interference in strong-field ionization of the neon dimer

          Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biomimetic 4D printing.

            Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product

              The work mainly focused on a validation of the method for determining the content of salicylic acid and individual unknown impurities in new pharmaceutical product—tablets containing: 75, 100 or 150 mg of acetylsalicylic acid and glycine in the amount of 40 mg for each dosage. The separation of the components was carried out by means of HPLC, using a Waters Symmetry C18 column (4.6 × 250 mm, 5 μm) as the stationary phase. The mobile phase consisted of a mixture of 85% orthophosphoric acid, acetonitrile and purified water (2:400:600 V/V/V). Detection was carried out at a wavelength of 237 nm, with a constant flow rate of 1.0 ml min −1 . In order to verify the method, linearity, precision (repeatability and reproducibility), accuracy, specificity, range, robustness, system precision, stability of the test and standard solution, limit of quantification and forced degradation were determined. Validation tests were performed in accordance with ICH (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use) guidelines. The method was validated successfully. It was confirmed that the method in a tested range of 0.005–0.40% salicylic acid with respect to acetylsalicylic acid content is linear, precise and accurate.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                February 2023
                December 09 2022
                February 2023
                : 33
                : 6
                : 2210353
                Affiliations
                [1 ]Bristol Composites Institute School of Civil Aerospace and Mechanical Engineering University of Bristol University Walk Bristol BS8 1TR UK
                [2 ]ICB UMR 6303 CNRS – University Bourgogne Franche‐Comté UTBM 90010 Belfort France
                [3 ]School of Cellular and Molecular Medicine University of Bristol University Walk Bristol BS8 1TD UK
                [4 ]University Bretagne Sud, IRDL Polymer and Composites UMR CNRS 6027 56100 Lorient France
                Article
                10.1002/adfm.202210353
                47986149-0be3-490d-875f-85d3fac5d7c7
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article