1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Electrode Insertion Angle on Cochlear Implantation Outcomes in Adult and Children Patients with Sensorineural Hearing Loss

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To determine the role played by electrode insertion angle in cochlear implantation (CI) outcomes in adult and children patients with sensorineural hearing loss (SNHL).

          Methods

          Adults ( n = 10) and children ( n = 19) with SNHL undergoing CI in a tertiary specialized hospital were retrospectively enrolled. The measurements were evaluated before and after CI surgery using sound field audiometry and speech recognition tests. Questionnaires were used to assess subjective benefits. Electrode insertion angles were determined using postoperative X-rays.

          Results

          Both adult and children patients showed significant improvements in hearing, speech performance, and audiology and speech-related quality of life after CI. The angular insertion depths of adult and children group were 323.70 ± 43.57° and 341.53 ± 57.07°, respectively, showing no significant difference. In the adult group, deeper insertion depths were found to be strongly linked to lower postoperative pure tone thresholds at 12 months and higher postoperative disyllabic Word Recognition and Sentence Recognition Scores at 6 months (all P < 0.05). In the children group, deeper insertion depth had a positive correlation with postoperative monosyllabic Word Recognition Scores 6 and 12 months after CI surgery (both P < 0.05). Multiple linear regression models were constructed to predict disyllabic Word Recognition Scores at 6 and 12 months postoperatively in the children group, in which insertion angle, duration of hearing loss, and preoperative questionnaire result were identified as dependent variables.

          Conclusions

          Greater angular insertion depths resulted in improved hearing and speech performances after CI. The benefits of greater angular insertion depths can be found in both adult and children patients and last for at least 12 months. Clinicians are expected to determine the optimal implantation direction during CI and ensure the insertion depth to improve the speech rehabilitation of patients.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Factors affecting open-set word recognition in adults with cochlear implants.

          A great deal of variability exists in the speech-recognition abilities of postlingually deaf adult cochlear implant (CI) recipients. A number of previous studies have shown that duration of deafness is a primary factor affecting CI outcomes; however, there is little agreement regarding other factors that may affect performance. The objective of the present study was to determine the source of variability in CI outcomes by examining three main factors, biographic/audiologic information, electrode position within the cochlea, and cognitive abilities in a group of newly implanted CI recipients. Participants were 114 postlingually deaf adults with either the Cochlear or Advanced Bionics CI systems. Biographic/audiologic information, aided sentence-recognition scores, a high resolution temporal bone CT scan and cognitive measures were obtained before implantation. Monosyllabic word recognition scores were obtained during numerous test intervals from 2 weeks to 2 years after initial activation of the CI. Electrode position within the cochlea was determined by three-dimensional reconstruction of pre- and postimplant CT scans. Participants' word scores over 2 years were fit with a logistic curve to predict word score as a function of time and to highlight 4-word recognition metrics (CNC initial score, CNC final score, rise time to 90% of CNC final score, and CNC difference score). Participants were divided into six outcome groups based on the percentile ranking of their CNC final score, that is, participants in the bottom 10% were in group 1; those in the top 10% were in group 6. Across outcome groups, significant relationships from low to high performance were identified. Biographic/audiologic factors of age at implantation, duration of hearing loss, duration of hearing aid use, and duration of severe-to-profound hearing loss were significantly and inversely related to performance as were frequency modulated tone, sound-field threshold levels obtained with the CI. That is, the higher-performing outcome groups were younger in age at the time of implantation, had shorter duration of severe-to-profound hearing loss, and had lower CI sound-field threshold levels. Significant inverse relationships across outcome groups were also observed for electrode position, specifically the percentage of electrodes in scala vestibuli as opposed to scala tympani and depth of insertion of the electrode array. In addition, positioning of electrode arrays closer to the modiolar wall was positively correlated with outcome. Cognitive ability was significantly and positively related to outcome; however, age at implantation and cognition were highly correlated. After controlling for age, cognition was no longer a factor affecting outcomes. There are a number of factors that limit CI outcomes. They can act singularly or collectively to restrict an individual's performance and to varying degrees. The highest performing CI recipients are those with the least number of limiting factors. Knowledge of when and how these factors affect performance can favorably influence counseling, device fitting, and rehabilitation for individual patients and can contribute to improved device design and application.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of electrode placement as a contributor to variability in cochlear implant outcomes.

            Suboptimal cochlear implant (CI) electrode array placement may reduce presentation of coded information to the central nervous system and, consequently, limit speech recognition. Generally, mean speech reception scores for CI recipients are similar across different CI systems, yet large outcome variation is observed among recipients implanted with the same device. These observations suggest significant recipient-dependent factors influence speech reception performance. This study examines electrode array insertion depth and scalar placement as recipient-dependent factors affecting outcome. Scalar location and depth of insertion of intracochlear electrodes were measured in 14 patients implanted with Advanced Bionics electrode arrays and whose word recognition scores varied broadly. Electrode position was measured using computed tomographic images of the cochlea and correlated with stable monosyllabic word recognition scores. Electrode placement, primarily in terms of depth of insertion and scala tympani versus scala vestibuli location, varies widely across subjects. Lower outcome scores are associated with greater insertion depth and greater number of contacts being located in scala vestibuli. Three patterns of scalar placement are observed suggesting variability in insertion dynamics arising from surgical technique. A significant portion of variability in word recognition scores across a broad range of performance levels of CI subjects is explained by variability in scalar location and insertion depth of the electrode array. We suggest that this variability in electrode placement can be reduced and average speech reception improved by better selection of cochleostomy sites, revised insertion approaches, and control of insertion depth during surgical placement of the array.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing.

              This study documents the importance of preserving residual low-frequency acoustic hearing as those with more residual hearing are selected for cochlear implantation. Surgical strategies used for hearing preservation with a short hybrid cochlear implant are outlined. The benefits of preserved residual low-frequency hearing, improved word understanding in noise, and music appreciation are described. Multicenter, prospective, single-subject design. Records were reviewed of 21 individuals participating in an Food and Drug Administration (FDA) feasibility clinical trial who have received an Iowa/Nucleus 10 mm electrode. A second group of subjects receiving implants at the University of Iowa that have used the 10 mm device between 2 years and 6 months were also reviewed. Outcome measures included standardized tests of monosyllabic word understanding, spondees in noise, and common melody recognition. Low-frequency hearing was maintained in all individuals immediately postoperative. One subject lost hearing at 2.5 months postoperative after a viral infection. The group has averaged a loss of -9 dB low-frequency acoustic hearing between 125 and 1,000 Hz. Monosyllabic word understanding scores at 6 months for a group being followed for an FDA clinical trial using the implant plus hearing aids was 69% correct. For the long-term group receiving implants at Iowa, monosyllabic word understanding in those who have used the device between 6 months and 2 years is 79%. Other important findings include improved recognition of speech in noise (9 dB improvement) as compared with standard cochlear implant recipients who were matched for speech recognition in quiet and near normal recognition of common melodies. The surgical strategies outlined have been successful in preservation of low-frequency hearing in 96% of individuals. Combined electrical and acoustical speech processing has enabled this group of volunteers to gain improved word understanding as compared with their preoperative hearing with bilateral hearing aids and a group of individuals receiving a standard cochlear implant with similar experience with their device. The improvement of speech in noise and melody recognition is attributed to the ability to distinguish fine pitch differences as the result of preserved residual low-frequency acoustic hearing. Preservation of low-frequency acoustic hearing is important for improving speech in noise and music appreciation for the hearing impaired, both of which are important in real-life situations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2022
                23 August 2022
                : 2022
                : 9914716
                Affiliations
                1ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
                2Clinical Laboratory Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
                3Shanghai Lishengte Medical Technology Co., Ltd., Shanghai 201318, China
                Author notes

                Academic Editor: Shao Liang

                Author information
                https://orcid.org/0000-0001-5978-7803
                https://orcid.org/0000-0002-9374-5751
                https://orcid.org/0000-0003-1411-5186
                https://orcid.org/0000-0002-2391-9429
                https://orcid.org/0000-0003-0558-5872
                https://orcid.org/0000-0002-2444-7646
                https://orcid.org/0000-0001-8044-1436
                https://orcid.org/0000-0002-3477-1562
                https://orcid.org/0000-0003-1551-412X
                Article
                10.1155/2022/9914716
                9427248
                36583098
                47a20719-e206-4df6-a893-48add3f851d5
                Copyright © 2022 Ting Fan et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 October 2021
                : 22 July 2022
                : 28 July 2022
                Funding
                Funded by: Fudan University
                Award ID: SZA202004
                Funded by: Young Medical Talents Training Program of Shanghai “Medical New Star”
                Funded by: National Natural Science Foundation of China
                Award ID: 82071043
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article