6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A facile Fe-doped carbon quantum dot based fluorescent sensor for dopamine sensing and bioimaging was constructed.

          Abstract

          In this paper, we have presented a novel strategy to fabricate Fe-doped carbon quantum dots (Fe-CQDs) for dopamine sensing applications. The Fe-CQDs are obtained by one step hydrothermal carbonization, using ethylenediamine tetraacetic acid salts and ferric nitrate as the carbon and iron source, which simultaneously incorporates Fe (dopamine-bonding site) and luminescent carbon quantum dots (fluorophores). The added dopamine containing catechol groups might form complexes with Fe ions (doped in CQDs) due to coordination. Subsequently, dopamine was oxidized to generate dopamine-quinone (a known potent electron acceptor) species by ambient O 2. Thus, the coordination induced dopamine in proximity to the CQDs, which provided favourable electron acceptors in close proximity to the CQDs and produced high quenching efficiencies. Such fluorescence responses can be used for well quantifying dopamine in the range of 0.01–50 μM with a detection limit of 5 nM (S/N = 3). The proposed sensing system has been successfully used for the assay of dopamine in human urine samples. Preliminary cell image study indicates that the obtained Fe-CQDs possess high photostability and low cytotoxicity, which make them promising for biological applications.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis.

            A facile ultrasonic route for the fabrication of graphene quantum dots (GQDs) with upconverted emission is presented. The as-prepared GQDs exhibit an excitation-independent downconversion and upconversion photoluminescent (PL) behavior, and the complex photocatalysts (rutile TiO(2)/GQD and anatase TiO(2)/GQD systems) were designed to harness the visible spectrum of sunlight. It is interesting that the photocatalytic rate of the rutile TiO(2)/GQD complex system is ca. 9 times larger than that of the anatase TiO(2)/GQD complex under visible light (λ > 420 nm) irradiation in the degradation of methylene blue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli.

              Growing evidence supports a critical role of metal-ligand coordination in many attributes of biological materials including adhesion, self-assembly, toughness, and hardness without mineralization [Rubin DJ, Miserez A, Waite JH (2010) Advances in Insect Physiology: Insect Integument and Color, eds Jérôme C, Stephen JS (Academic Press, London), pp 75-133]. Coordination between Fe and catechol ligands has recently been correlated to the hardness and high extensibility of the cuticle of mussel byssal threads and proposed to endow self-healing properties [Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Science 328:216-220]. Inspired by the pH jump experienced by proteins during maturation of a mussel byssus secretion, we have developed a simple method to control catechol-Fe(3+) interpolymer cross-linking via pH. The resonance Raman signature of catechol-Fe(3+) cross-linked polymer gels at high pH was similar to that from native mussel thread cuticle and the gels displayed elastic moduli (G') that approach covalently cross-linked gels as well as self-healing properties.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANALAO
                The Analyst
                Analyst
                Royal Society of Chemistry (RSC)
                0003-2654
                1364-5528
                January 14 2019
                2019
                : 144
                : 2
                : 656-662
                Affiliations
                [1 ]Key Laboratory of Functional Molecular Solids
                [2 ]Ministry of Education
                [3 ]Anhui Key Laboratory of Chemo-Biosensing
                [4 ]College of Chemistry and Materials Science
                [5 ]Anhui Normal University
                Article
                10.1039/C8AN01741G
                30484788
                481aeeb5-0a8a-4476-8bbd-668cdc9e8532
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article