65
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biodiversity's Big Wet Secret: The Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean

      research-article
      1 , * , 2 , 3
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-represented in global databases of marine biodiversity.

          Methodology/Principal Findings

          We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented.

          Conclusions/Significance

          The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Pelagic protected areas: the missing dimension in ocean conservation.

          Fewer protected areas exist in the pelagic ocean than any other ecosystem on Earth. Although there is increasing support for marine protected areas (MPAs) as a tool for pelagic conservation, there have also been numerous criticisms of the ecological, logistical and economic feasibility of place-based management in the dynamic pelagic environment. Here we argue that recent advances across conservation, oceanography and fisheries science provide the evidence, tools and information to address these criticisms and confirm MPAs as defensible and feasible instruments for pelagic conservation. Debate over the efficacy of protected areas relative to other conservation measures cannot be resolved without further implementation of MPAs in the pelagic ocean.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global patterns of diversity and community structure in marine bacterioplankton.

            Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world-wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity.

              Spatial patterns of species richness follow climatic and environmental variation, but could reflect random dynamics of species ranges (the mid-domain effect, MDE). Using data on the global distribution of birds, we compared predictions based on energy availability (actual evapotranspiration, AET, the best single correlate of avian richness) with those of range dynamics models. MDE operating within the global terrestrial area provides a poor prediction of richness variation, but if it operates separately within traditional biogeographic realms, it explains more global variation in richness than AET. The best predictions, however, are given by a model of global range dynamics modulated by AET, such that the probability of a range spreading into an area is proportional to its AET. This model also accurately predicts the latitudinal variation in species richness and variation of species richness both within and between realms, thus representing a compelling mechanism for the major trends in global biodiversity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                2 August 2010
                : 5
                : 8
                : e10223
                Affiliations
                [1 ]Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
                [2 ]Ocean Biogeographic Information System, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
                [3 ]Census of Marine Life, Consortium for Ocean Leadership, Washington, D. C., United States of America
                NatureServe, United States of America
                Author notes

                Conceived and designed the experiments: TW EVB RO. Performed the experiments: TW EVB. Analyzed the data: TW EVB. Contributed reagents/materials/analysis tools: TW EVB. Wrote the paper: TW EVB RO.

                Article
                10-PONE-RA-16122R1
                10.1371/journal.pone.0010223
                2914017
                20689845
                481eae58-851f-4e9e-8eab-fc4d42c8b890
                Webb et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 February 2010
                : 29 March 2010
                Page count
                Pages: 6
                Categories
                Research Article
                Ecology/Community Ecology and Biodiversity
                Ecology/Ecosystem Ecology
                Ecology/Marine and Freshwater Ecology
                Marine and Aquatic Sciences
                Marine and Aquatic Sciences/Conservation Science
                Marine and Aquatic Sciences/Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article