49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution

      research-article
        1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Body size and metabolism

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NeuN, a neuronal specific nuclear protein in vertebrates.

              A battery of monoclonal antibodies (mAbs) against brain cell nuclei has been generated by repeated immunizations. One of these, mAb A60, recognizes a vertebrate nervous system- and neuron-specific nuclear protein that we have named NeuN (Neuronal Nuclei). The expression of NeuN is observed in most neuronal cell types throughout the nervous system of adult mice. However, some major cell types appear devoid of immunoreactivity including cerebellar Purkinje cells, olfactory bulb mitral cells, and retinal photoreceptor cells. NeuN can also be detected in neurons in primary cerebellar cultures and in retinoic acid-stimulated P19 embryonal carcinoma cells. Immunohistochemically detectable NeuN protein first appears at developmental timepoints which correspond with the withdrawal of the neuron from the cell cycle and/or with the initiation of terminal differentiation of the neuron. NeuN is a soluble nuclear protein, appears as 3 bands (46-48 x 10(3) M(r)) on immunoblots, and binds to DNA in vitro. The mAb crossreacts immunohistochemically with nervous tissue from rats, chicks, humans, and salamanders. This mAb and the protein recognized by it serve as an excellent marker for neurons in the central and peripheral nervous systems in both the embryo and adult, and the protein may be important in the determination of neuronal phenotype.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                1 March 2011
                : 6
                : 3
                : e17514
                Affiliations
                [1 ]Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
                [2 ]Instituto Nacional de Neurociência Translacional, Ministério de Ciência e Tecnologia, São Paulo, São Paulo, Brasil
                University of Maribor, Slovenia
                Author notes

                Conceived and designed the experiments: SH-H. Performed the experiments: SH-H. Analyzed the data: SH-H. Contributed reagents/materials/analysis tools: SH-H. Wrote the paper: SH-H.

                Article
                PONE-D-10-04097
                10.1371/journal.pone.0017514
                3046985
                21390261
                485ec562-0b15-4bf5-9c17-0aaef2300eee
                Suzana Herculano-Houzel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 November 2010
                : 7 February 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Biochemistry
                Bioenergetics
                Metabolism
                Evolutionary Biology
                Organismal Evolution
                Animal Evolution
                Human Evolution
                Neuroscience
                Neural Homeostasis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article