12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: the role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs). To better understand methods for prevention of MDR infections, this study aimed to determine, among other factors, the role of MDR-Gram-negative bacteria (GNB) contaminating neonatal cots and hands of mothers as possible role in transmission of bacteremia at Bugando Medical Centre (BMC), Mwanza, Tanzania.

          Methods

          This cross-sectional, hospital-based study was conducted among neonates and their mothers in a neonatal intensive care unit and a neonatology unit at BMC from December 2018 to April 2019. Blood specimens ( n = 200) were sub-cultured on 5% sheep blood agar (SBA) and MacConkey agar (MCA) plates. Other specimens (200 neonatal rectal swabs, 200 maternal hand swabs and 200 neonatal cot swabs) were directly inoculated on MCA plates supplemented with 2 μg/ml cefotaxime (MCA-C) for screening of GNB resistant to third generation cephalosporins, r-3GCs. Conventional biochemical tests, Kirby-Bauer technique and resistance to cefoxitin 30 μg were used for identification of bacteria, antibiotic susceptibility testing and detection of MDR-GNB and screening of potential Amp-C beta lactamase producing GNB, respectively.

          Results

          The prevalence of culture confirmed bacteremia was 34.5% of which 85.5% were GNB. Fifty-five (93.2%) of GNB isolated from neonatal blood specimens were r-3GCs. On the other hand; 43% of neonates were colonized with GNB r-3GCs, 32% of cots were contaminated with GNB r-3GCs and 18.5% of hands of neonates’ mothers were contaminated with GNB r-3GCs. The prevalences of MDR-GNB isolated from blood culture and GNB r-3GCs isolated from neonatal colonization, cots and mothers’ hands were 96.6, 100, 100 and 94.6%, respectively. Significantly, cyanosis (OR[95%CI]: 3.13[1.51–6.51], p = 0.002), jaundice (OR[95%CI]: 2.10[1.07–4.14], p = 0.031), number of invasive devices (OR[95%CI]: 2.52[1.08–5.85], p = 0.031) and contaminated cot (OR[95%CI]: 2.39[1.26–4.55], p = 0.008) were associated with bacteremia due to GNB. Use of tap water only (OR[95%CI]: 2.12[0.88–5.09], p = 0.040) was protective for bacteremia due to GNB.

          Conclusion

          High prevalence of MDR-GNB bacteremia and intestinal colonization, and MDR-GNB contaminating cots and mothers’ hands was observed. Improved cots decontamination strategies is crucial to limit the spread of MDR-GNB. Further, clinical presentations and water use should be considered in administration of empirical therapy whilst awaiting culture results.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Contamination, Disinfection, and Cross-Colonization: Are Hospital Surfaces Reservoirs for Nosocomial Infection?

          Abstract Despite documentation that the inanimate hospital environment (e.g., surfaces and medical equipment) becomes contaminated with nosocomial pathogens, the data that suggest that contaminated fomites lead to nosocomial infections do so indirectly. Pathogens for which there is more-compelling evidence of survival in environmental reservoirs include Clostridium difficile, vancomycin-resistant enterococci, and methicillin-resistant Staphylococcus aureus, and pathogens for which there is evidence of probable survival in environmental reservoirs include norovirus, influenza virus, severe acute respiratory syndrome—associated coronavirus, and Candida species. Strategies to reduce the rates of nosocomial infection with these pathogens should conform to established guidelines, with an emphasis on thorough environmental cleaning and use of Environmental Protection Agency—approved detergent-disinfectants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza- Tanzania

            Background Neonatal sepsis is a significant cause of morbidity and mortality in neonates. Appropriate clinical diagnosis and empirical treatment in a given setting is crucial as pathogens of bacterial sepsis and antibiotic sensitivity pattern can considerably vary in different settings. This study was conducted at Bugando Medical Centre (BMC), Tanzania to determine the prevalence of neonatal sepsis, predictors of positive blood culture, deaths and antimicrobial susceptibility, thus providing essential information to formulate a policy for management of neonatal sepsis. Methods This was a prospective cross sectional study involving 300 neonates admitted at BMC neonatal unit between March and November 2009. Standard data collection form was used to collect all demographic data and clinical characteristics of neonates. Blood culture was done on Brain Heart Infusion broth followed by identification of isolates using conventional methods and testing for their susceptibility to antimicrobial agents using the disc diffusion method. Results Among 770 neonates admitted during the study period; 300 (38.9%) neonates were diagnosed to have neonatal sepsis by WHO criteria. Of 300 neonates with clinical neonatal sepsis 121(40%) and 179(60%) had early and late onset sepsis respectively. Positive blood culture was found in 57 (47.1%) and 92 (51.4%) among neonates with early and late onset neonatal sepsis respectively (p = 0.466). Predictors of positive blood culture in both early and late onset neonatal sepsis were inability to feed, lethargy, cyanosis, meconium stained liquor, premature rupture of the membrane and convulsion. About 49% of gram negatives isolates were resistant to third generation cephalosporins and 28% of Staphylococcus aureus were found to be Methicillin resistant Staphylococcus aureus (MRSA). Deaths occurred in 57 (19%) of neonates. Factors that predicted deaths were positive blood culture (p = 0.0001), gram negative sepsis (p = 0.0001) and infection with ESBL (p = 0.008) or MRSA (p = 0.008) isolates. Conclusion Our findings suggest that lethargy, convulsion, inability to feed, cyanosis, PROM and meconium stained liquor are significantly associated with positive blood culture in both early and late onset disease. Mortality and morbidity on neonatal sepsis is high at our setting and is significantly contributed by positive blood culture with multi-resistant gram negative bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bacterial contamination of inanimate surfaces and equipment in the intensive care unit

              Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare workers’ hands or by direct patient shedding of bacteria which are able to survive up to several months on dry surfaces. A higher environmental contamination has been reported around infected patients than around patients who are only colonized and, in this last group, a correlation has been observed between frequency of environmental contamination and culture-positive body sites. Healthcare workers not only contaminate their hands after direct patient contact but also after touching inanimate surfaces and equipment in the patient zone (the patient and his/her immediate surroundings). Inadequate hand hygiene before and after entering a patient zone may result in cross-transmission of pathogens and patient colonization or infection. A number of equipment items and commonly used objects in ICU carry bacteria which, in most cases, show the same antibiotic susceptibility profiles of those isolated from patients. The aim of this review is to provide an updated evidence about contamination of inanimate surfaces and equipment in ICU in light of the concept of patient zone and the possible implications for bacterial pathogen cross-transmission to critically ill patients.
                Bookmark

                Author and article information

                Contributors
                vsilago.silago2@gmail.com
                Journal
                Antimicrob Resist Infect Control
                Antimicrob Resist Infect Control
                Antimicrobial Resistance and Infection Control
                BioMed Central (London )
                2047-2994
                6 May 2020
                6 May 2020
                2020
                : 9
                : 58
                Affiliations
                [1 ]GRID grid.411961.a, ISNI 0000 0004 0451 3858, Department of Microbiology and Immunology, Weill Bugando School of Medicine, , Catholic University of Health and Allied Sciences, ; P. O. Box 1464, Bugando, Mwanza, Tanzania
                [2 ]GRID grid.11887.37, ISNI 0000 0000 9428 8105, Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, , Sokoine University of Agriculture, ; P. O. Box 3000, Morogoro, Tanzania
                [3 ]GRID grid.8756.c, ISNI 0000 0001 2193 314X, Institute of Biodiversity, Animal Health and Comparative Medicine, , University of Glasgow, ; Glasgow, UK
                [4 ]GRID grid.411961.a, ISNI 0000 0004 0451 3858, Department of Pediatrics and Child Health, Weill Bugando School of Medicine, , Catholic University of Health and Allied Sciences, ; P. O. Box 1464, Bugando, Mwanza, Tanzania
                [5 ]GRID grid.1013.3, ISNI 0000 0004 1936 834X, Sydney School of Veterinary Science, , University of Sydney, ; Sydney, Australia
                [6 ]GRID grid.11887.37, ISNI 0000 0000 9428 8105, Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, , Sokoine University of Agriculture, ; P. O. Box 3000, Morogoro, Tanzania
                Author information
                http://orcid.org/0000-0002-4178-3254
                Article
                721
                10.1186/s13756-020-00721-w
                7201549
                32375857
                4877bfa8-038d-4676-94ed-8691401f9ac4
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 29 January 2020
                : 22 April 2020
                Funding
                Funded by: SNAP-AMR, Antimicrobial Resistance Cross-Council Initiative, Medical Research Council, UK
                Award ID: NA
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Infectious disease & Microbiology
                antimicrobial resistance,hand hygiene,hospital surfaces contamination,multidrug resistant bacteria,bacteremia

                Comments

                Comment on this article