20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have derived from normal human, mouse, and rat postnatal bone marrow primitive, multipotent adult progenitor cells (MAPCs) that can differentiate into most mesodermal cells and neuroectodermal cells in vitro and into all embryonic lineages in vivo. Here, we show that MAPCs can also differentiate into hepatocyte-like cells in vitro. Human, mouse, and rat MAPCs, cultured on Matrigel with FGF-4 and HGF, differentiated into epithelioid cells that expressed hepatocyte nuclear factor-3beta (HNF-3beta), GATA4, cytokeratin 19 (CK19), transthyretin, and alpha-fetoprotein by day 7, and expressed CK18, HNF-4, and HNF-1alpha on days 14-28. Virtually all human, as well as a majority of rodent cells stained positive for albumin and CK18 on day 21; 5% (rodent) to 25% (human) cells were binucleated by day 21. These cells also acquired functional characteristics of hepatocytes: they secreted urea and albumin, had phenobarbital-inducible cytochrome p450, could take up LDL, and stored glycogen. MAPCs, which can be expanded in vitro and maintained in an undifferentiated state for more than 100 population doublings, can thus differentiate into cells with morphological, phenotypic, and functional characteristics of hepatocytes. MAPCs may therefore be an ideal cell for in vivo therapies for liver disorders or for use in bioartificial liver devices.

          Related collections

          Author and article information

          Journal
          J Clin Invest
          The Journal of clinical investigation
          American Society for Clinical Investigation
          0021-9738
          0021-9738
          May 2002
          : 109
          : 10
          Affiliations
          [1 ] Stem Cell Institute, University of Minnesota, Minneapolis 55455, USA.
          Article
          10.1172/JCI15182
          150983
          12021244
          48cd5ca6-bb7d-4ca9-84a8-0045ea98c84c
          History

          Comments

          Comment on this article