4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comprehensive review on health benefits, nutritional composition and processed products of camel milk

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress in autism.

          Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein), are decreased in children with autism. There is a positive correlation between reduced levels of these proteins and loss of previously acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism. The levels of phosphatidylethanolamine (PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Furthermore, environmental and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern.

            In steroid-synthesizing cells, like the MA-10 mouse tumor Leydig cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Expression of PBR in Escherichia coli DE3 cells, which have no PBR, no cholesterol, and do not make steroids, induced the ability to take up cholesterol in a time-dependent, temperature-sensitive, and energy-independent manner. These cells took up no other steroids tested. Addition of the high affinity PBR ligand PK 11195 to cholesterol-loaded membranes, obtained from cells transfected with PBR, resulted in the release of the uptaken cholesterol. Expression in DE3 cells of mutant PBRs demonstrated that deletions in the cytoplasmic carboxy-terminus dramatically reduced the cholesterol uptake function of PBR, although it retained full capacity to bind PK 11195. Site-directed mutagenesis in the carboxy-terminal region of PBR demonstrated that bacteria expressing the mutant PBR proteins PBR(Y153S) and PBR(R156L) do not accumulate cholesterol, suggesting that amino acids Y153 and R156 are involved in the interaction of the receptor with cholesterol. Considering these results, we postulate the existence of a common cholesterol recognition/interaction amino acid consensus pattern (-L/V-(X)(1-5)-Y-(X)(1-5)-R/K-). Indeed, we found this amino acid consensus pattern in all proteins shown to interact with cholesterol. In conclusion, these data suggest that the expression of PBR confers the ability to take up and release, upon ligand activation, cholesterol. Considering the widespread occurrence of this protein and its tissue and cell specific subcellular localization, these results suggest a more general role of PBR in intracellular cholesterol transport and compartmentalization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bovine milk in human nutrition – a review

              Milk and milk products are nutritious food items containing numerous essential nutrients, but in the western societies the consumption of milk has decreased partly due to claimed negative health effects. The content of oleic acid, conjugated linoleic acid, omega-3 fatty acids, short- and medium chain fatty acids, vitamins, minerals and bioactive compounds may promote positive health effects. Full-fat milk has been shown to increase the mean gastric emptying time compared to half-skimmed milk, thereby increasing the gastrointestinal transit time. Also the low pH in fermented milk may delay the gastric emptying. Hence, it may be suggested that ingesting full-fat milk or fermented milk might be favourable for glycaemic (and appetite?) regulation. For some persons milk proteins, fat and milk sugar may be of health concern. The interaction between carbohydrates (both natural milk sugar and added sugar) and protein in milk exposed to heat may give products, whose effects on health should be further studied, and the increasing use of sweetened milk products should be questioned. The concentration in milk of several nutrients can be manipulated through feeding regimes. There is no evidence that moderate intake of milk fat gives increased risk of diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Food Reviews International
                Food Reviews International
                Informa UK Limited
                8755-9129
                1525-6103
                January 22 2022
                : 1-37
                Affiliations
                [1 ]Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, India
                [2 ]Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
                [3 ]Department of Biology, College of Science, United Arab Emirates University, UAE
                [4 ]Zayed Center for Health Sciences, The United Arab Emirates University, UAE
                Article
                10.1080/87559129.2021.2008953
                49469016-ef06-4607-b5ef-fc65a2b3f81f
                © 2022
                History

                Comments

                Comment on this article