33
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We assessed the in vitro antiviral activity of remdesivir and its parent nucleoside GS-441524, molnupiravir and its parent nucleoside EIDD-1931 and the viral protease inhibitor nirmatrelvir against the ancestral SARS-CoV2 strain and the five variants of concern including Omicron. VeroE6-GFP cells were pre-treated overnight with serial dilutions of the compounds before infection. The GFP signal was determined by high-content imaging on day 4 post-infection. All molecules have equipotent antiviral activity against the ancestral virus and the VOCs Alpha, Beta, Gamma, Delta and Omicron. These findings are in line with the observation that the target proteins of these antivirals (respectively the viral RNA dependent RNA polymerase and the viral main protease Mpro) are highly conserved.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found

          Remdesivir for the Treatment of Covid-19 — Final Report

          Abstract Background Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious. Methods We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults hospitalized with Covid-19 with evidence of lower respiratory tract involvement. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. Results A total of 1063 patients underwent randomization. The data and safety monitoring board recommended early unblinding of the results on the basis of findings from an analysis that showed shortened time to recovery in the remdesivir group. Preliminary results from the 1059 patients (538 assigned to remdesivir and 521 to placebo) with data available after randomization indicated that those who received remdesivir had a median recovery time of 11 days (95% confidence interval [CI], 9 to 12), as compared with 15 days (95% CI, 13 to 19) in those who received placebo (rate ratio for recovery, 1.32; 95% CI, 1.12 to 1.55; P<0.001). The Kaplan-Meier estimates of mortality by 14 days were 7.1% with remdesivir and 11.9% with placebo (hazard ratio for death, 0.70; 95% CI, 0.47 to 1.04). Serious adverse events were reported for 114 of the 541 patients in the remdesivir group who underwent randomization (21.1%) and 141 of the 522 patients in the placebo group who underwent randomization (27.0%). Conclusions Remdesivir was superior to placebo in shortening the time to recovery in adults hospitalized with Covid-19 and evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients

            Background Remdesivir improves clinical outcomes in patients hospitalized with moderate-to-severe coronavirus disease 2019 (Covid-19). Whether the use of remdesivir in symptomatic, nonhospitalized patients with Covid-19 who are at high risk for disease progression prevents hospitalization is uncertain. Methods We conducted a randomized, double-blind, placebo-controlled trial involving nonhospitalized patients with Covid-19 who had symptom onset within the previous 7 days and who had at least one risk factor for disease progression (age ≥60 years, obesity, or certain coexisting medical conditions). Patients were randomly assigned to receive intravenous remdesivir (200 mg on day 1 and 100 mg on days 2 and 3) or placebo. The primary efficacy end point was a composite of Covid-19–related hospitalization or death from any cause by day 28. The primary safety end point was any adverse event. A secondary end point was a composite of a Covid-19–related medically attended visit or death from any cause by day 28. Results A total of 562 patients who underwent randomization and received at least one dose of remdesivir or placebo were included in the analyses: 279 patients in the remdesivir group and 283 in the placebo group. The mean age was 50 years, 47.9% of the patients were women, and 41.8% were Hispanic or Latinx. The most common coexisting conditions were diabetes mellitus (61.6%), obesity (55.2%), and hypertension (47.7%). Covid-19–related hospitalization or death from any cause occurred in 2 patients (0.7%) in the remdesivir group and in 15 (5.3%) in the placebo group (hazard ratio, 0.13; 95% confidence interval [CI], 0.03 to 0.59; P=0.008). A total of 4 of 246 patients (1.6%) in the remdesivir group and 21 of 252 (8.3%) in the placebo group had a Covid-19–related medically attended visit by day 28 (hazard ratio, 0.19; 95% CI, 0.07 to 0.56). No patients had died by day 28. Adverse events occurred in 42.3% of the patients in the remdesivir group and in 46.3% of those in the placebo group. Conclusions Among nonhospitalized patients who were at high risk for Covid-19 progression, a 3-day course of remdesivir had an acceptable safety profile and resulted in an 87% lower risk of hospitalization or death than placebo. (Funded by Gilead Sciences; PINETREE ClinicalTrials.gov number, NCT04501952 ; EudraCT number, 2020-003510-12 .)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence

              After initially containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many European and Asian countries had a resurgence of COVID-19 consistent with a large proportion of the population remaining susceptible to the virus after the first epidemic wave. 1 By contrast, in Manaus, Brazil, a study of blood donors indicated that 76% (95% CI 67–98) of the population had been infected with SARS-CoV-2 by October, 2020. 2 High attack rates of SARS-CoV-2 were also estimated in population-based samples from other locations in the Amazon Basin—eg, Iquitos, Peru 70% (67–73). 3 The estimated SARS-CoV-2 attack rate in Manaus would be above the theoretical herd immunity threshold (67%), given a basic case reproduction number (R0) of 3. 4 In this context, the abrupt increase in the number of COVID-19 hospital admissions in Manaus during January, 2021 (3431 in Jan 1–19, 2021, vs 552 in Dec 1–19, 2020) is unexpected and of concern (figure ).5, 6, 7, 8, 9, 10 After a large epidemic that peaked in late April, 2020, COVID-19 hospitalisations in Manaus remained stable and fairly low for 7 months from May to November, despite the relaxation of COVID-19 control measures during that period (figure). Figure COVID-19 hospitalisations, excess deaths, and Rt in Manaus, Brazil, 2020–21 (A) Dark lines are the 7-day rolling averages and lighter lines are the daily time series of COVID-19 hospitalisations and excess deaths. Hospitalisation data are from the Fundação de Vigilância em Saúde do Amazonas. 5 Total all-cause deaths for 2020–21 were reported initially by the Prefeitura de Manaus 6 and subsequently in the daily COVID-19 bulletin of the Fundação de Vigilância em Saúde do Amazonas. 7 All-cause deaths from 2019 were from Arpen/AM (Associação dos Registradores Civis das Pessoas Naturais do Amazonas). 8 The compiled excess death data are from Bruce Nelson from the Instituto Nacional de Pesquisas da Amazônia. 9 (B) R t was calculated using the time series of COVID-19 hospitalisations after removal of the past 14 days to account for delays in notification. R t was calculated using the EpiFilter method. 10 Lines are median R t estimates; shaded areas are the 95% CIs. R t=Effective reproduction number. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. There are at least four non-mutually exclusive possible explanations for the resurgence of COVID-19 in Manaus. First, the SARS-CoV-2 attack rate could have been overestimated during the first wave, and the population remained below the herd immunity threshold until the beginning of December, 2020. In this scenario, the resurgence could be explained by greater mixing of infected and susceptible individuals during December. The 76% estimate of past infection 2 might have been biased upwards due to adjustments to the observed 52·5% (95% CI 47·6–57·5) seroprevalence in June, 2020, to account for antibody waning. However, even this lower bound should confer important population immunity to avoid a larger outbreak. Furthermore, comparisons of blood donors with census data showed no major difference in a range of demographic variables, 2 and the mandatory exclusion of donors with symptoms of COVID-19 is expected to underestimate the true population exposure to the virus. Reanalysis and model comparison 11 by independent groups will help inform the best-fitting models for antibody waning and the representativeness of blood donors. Second, immunity against infection might have already begun to wane by December, 2020, because of a general decrease in immune protection against SARS-CoV-2 after a first exposure. Waning of anti-nucleocapsid IgG antibody titres observed in blood donors 2 might reflect a loss of immune protection, although immunity to SARS-CoV-2 depends on a combination of B-cell and T-cell responses. 12 A study of UK health-care workers 13 showed that reinfection with SARS-CoV-2 is uncommon up to 6 months after the primary infection. However, most of the SARS-CoV-2 infections in Manaus occurred 7–8 months before the resurgence in January, 2021; this is longer than the period covered by the UK study, 13 but nonetheless suggests that waning immunity alone is unlikely to fully explain the recent resurgence. Moreover, population mobility in Manaus decreased from mid-November, 2020, with a sharp reduction in late December, 2020, 14 suggesting that behavioural change does not account for the resurgence of hospitalisations. Third, SARS-CoV-2 lineages might evade immunity generated in response to previous infection. 15 Three recently detected SARS-CoV-2 lineages (B.1.1.7, B.1.351, and P.1), are unusually divergent and each possesses a unique constellation of mutations of potential biological importance.16, 17, 18 Of these, two are circulating in Brazil (B.1.1.7 and P.1) and one (P.1) was detected in Manaus on Jan 12, 2021. 16 One case of SARS-CoV-2 reinfection has been associated with the P.1 lineage in Manaus 19 that accrued ten unique spike protein mutations, including E484K and N501K. 16 Moreover, the newly classified P.2 lineage (sublineage of B.1.128 that independently accrued the spike E484K mutation) has now been detected in several locations in Brazil, including Manaus. 20 P.2 variants with the E484K mutation have been detected in two people who have been reinfected with SARS-CoV-2 in Brazil,21, 22 and there is in-vitro evidence that the presence of the E484K mutation reduces neutralisation by polyclonal antibodies in convalescent sera. 15 Fourth, SARS-CoV-2 lineages circulating in the second wave might have higher inherent transmissibility than pre-existing lineages circulating in Manaus. The P.1 lineage was first discovered in Manaus. 16 In a preliminary study, this lineage reached a high frequency (42%, 13 of 31) among genome samples obtained from COVID-19 cases in December, 2020, but was absent in 26 samples collected in Manaus between March and November, 2020. 16 Thus far, little is known about the transmissibility of the P.1 lineage, but it shares several independently acquired mutations with the B.1.1.7 (N501Y) and the B.1.325 (K417N/T, E484K, N501Y) lineages circulating in the UK and South Africa, which seem to have increased transmissibility. 18 Contact tracing and outbreak investigation data are needed to better understand relative transmissibility of this lineage. The new SARS-CoV-2 lineages may drive a resurgence of cases in the places where they circulate if they have increased transmissibility compared with pre-existing circulating lineages and if they are associated with antigenic escape. For this reason, the genetic, immunological, clinical, and epidemiological characteristics of these SARS-CoV-2 variants need to be quickly investigated. Conversely, if resurgence in Manaus is due to waning of protective immunity, then similar resurgence scenarios should be expected in other locations. Sustained serological and genomic surveillance in Manaus and elsewhere is a priority, with simultaneous monitoring for SARS-CoV-2 reinfections and implementation of non-pharmaceutical interventions. Determining the efficacy of existing COVID-19 vaccines against variants in the P.1 lineage and other lineages with potential immune escape variants is also crucial. Genotyping viruses from COVID-19 patients who were not protected by vaccination in clinical trials would help us to understand if there are lineage-specific frequencies underlying reinfection. The protocols and findings of such studies should be coordinated and rapidly shared wherever such variants emerge and spread. Since rapid data sharing is the basis for the development and implementation of actionable disease control measures during public health emergencies, we are openly sharing in real-time monthly curated serosurvey data from blood donors through the Brazil–UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE) Centre GitHub website and will continue to share genetic sequence data and results from Manaus through openly accessible data platforms such as GISAID and Virological.
                Bookmark

                Author and article information

                Journal
                Antiviral Res
                Antiviral Res
                Antiviral Research
                KU Leuven. Published by Elsevier B.V.
                0166-3542
                1872-9096
                24 January 2022
                February 2022
                24 January 2022
                : 198
                : 105252
                Affiliations
                [a ]KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
                [b ]KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
                [c ]University Hospitals Leuven, Department of Laboratory Medicine, Leuven, Belgium
                [d ]KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical Bacteriology and Mycology, Leuven, Belgium
                Author notes
                []Corresponding author.
                [∗∗ ]Corresponding author.
                [1]

                These authors have contributed equally to this work and share last authorship.

                Article
                S0166-3542(22)00020-1 105252
                10.1016/j.antiviral.2022.105252
                8785409
                35085683
                496b954d-ce81-4324-93d0-15a271302533
                © 2022 KU Leuven

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 1 January 2022
                : 11 January 2022
                : 18 January 2022
                Categories
                Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article