26
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the photodynamic activity of Xanthene Dyes on Artemia salina described by chemometric approaches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of drugs for photodynamic therapy (PDT) is an important area of research due to their growing use in medical applications. Therefore, it is important to develop new bioassay methods for PDT photosensitizers that are inexpensive, easy to handle and highly sensitive to environmental conditions. Xanthene dyes (fluorescein, rose bengal B, erythrosine B and eosin Y) with LED light sources were investigated using Artemia salina as a bioindicator of photodynamic activity. In this study, three factors were investigated: (i) photosensitizers concentration, (ii) the LED irradiation time and (iii) the waiting time between the addition of the photosensitizers and the beginning of the irradiation. To analyze the photo-killing of A. salina, it was employed a 23 full factorial design. The death of A. salina was related to dye structure and the interaction between the irradiation time and the photosensitizers concentration. About 60% of crustaceans death was obtained using rose bengal B, which presentes the highest quantum yield of singlet oxygen due to the number of iodide substituents in the xanthenes ring. The proposed bioassay using A. salina, xanthene dyes and LED irradiation was found suitable for quantitative PDT drug evaluation.

          Translated abstract

          O desenvolvimento de fármacos para terapia foto-dinâmica (TFD) é uma importante área de pesquisa devido ao seu crescente uso em aplicações médicas. Portanto, é importante desenvolver novos métodos de bioensaios para TFD fotossensibilizadores que sejam de baixo custo, de fácil execução e altamente sensíveis às condições do meio. Corantes xantênicos (fluoresceína, rosa de bengala B, eritrosina B e eosina Y) iluminados com luz LED foram investigados usando Artêmia salina como bioindicador da atividade fotodinâmica. Neste estudo, três fatores foram investigados (i) concentração do fotossensibilizador; (ii) o tempo de irradiação LED e (iii) o tempo de espera entre a adição do fotossensibilizador e o início da irradiação. Para analisar a foto-mortandade da A. salina foi aplicado o planejamento fatorial 23 completo. A morte da A. salina foi relacionada à estrutura do corante e à interação entre o tempo de irradiação e a concentração do fotossensibilizador. Cerca de 60% da morte do crustáceo foi obtida usando rosa de bengala B, que apresenta o maior rendimento quântico de oxigênio singlete devido aos átomos de iodo substituintes no anel xantênico. O bioensaio proposto usando A. salina, corantes xantenos e irradiação LED foi apropriado para a avaliação quantitativa de fármacos para TFD.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Photosensitizers in clinical PDT.

          Photosensitizers in photodynamic therapy allow for the transfer and translation of light energy into a type II chemical reaction. In clinical practice, photosensitizers arise from three families-porphyrins, chlorophylls, and dyes. All clinically successful photosensitizers have the ability to a greater or lesser degree, to target specific tissues or their vasculature to achieve ablation. Each photosensitizer needs to reliably activate at a high enough light wavelength useful for therapy. Their ability to fluoresce and visualize the lesion is a bonus. Photosensitizers developed from each family have unique properties that have so far been minimally clinically exploited. This review looks at the potential benefits and consequences of each major photosensitizer that has been tried in a clinical setting.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laser and non-laser light sources for photodynamic therapy.

            Photodynamic therapy (PDT) is an anticancer combination therapy, which requires a photosensitiser, which tends to accumulate preferentially in the tumour, and light. Historically large, complex lasers have been used to carry out PDT treatment. Nowadays there is a wide range of coherent and non-coherent sources that can be used. This paper considers the important characteristics of light sources for PDT, including dye lasers pumped by argon or metal vapour lasers and frequency-doubled Nd:YAG lasers. Non-laser sources including tungsten filament, xenon arc, metal halide and fluorescent lamps are also discussed. New exciting developments such as LEDs and femtosecond lasers are also reviewed. The relative merits of laser and non-laser sources are critically examined.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              QUANTUM YIELD OF SINGLET OXYGEN PRODUCTION BY XANTHENE DERIVATIVES

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                aabc
                Anais da Academia Brasileira de Ciências
                An. Acad. Bras. Ciênc.
                Academia Brasileira de Ciências (Rio de Janeiro )
                1678-2690
                October 2013
                : 85
                : 4
                : 1267-1274
                Affiliations
                [1 ] Universidade Estadual de Maringá Brazil
                [2 ] Universidade Estadual de Maringá Brazil
                Article
                S0001-37652013000401267
                10.1590/0001-3765201395412
                4a254f4c-d326-40f7-a6c8-4a37a18c6e02

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0001-3765&lng=en
                Categories
                MULTIDISCIPLINARY SCIENCES

                Artemia salina,factorial design,photodynamic therapy,bioassay,xanthenes,Artêmia salina,planejamento fatorial,terapia fotodinamica,bioensaio,xantenos

                Comments

                Comment on this article