15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dengue virus–elicited tryptase induces endothelial permeability and shock

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we showed that an MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in 2 independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever.

          Infection with any 1 of 4 dengue viruses produces a spectrum of clinical illness ranging from a mild undifferentiated febrile illness to dengue fever (DF) to dengue hemorrhagic fever (DHF), a potentially life-threatening disease. The morbidity and mortality of DHF can be reduced by early hospitalization and careful supportive care. To determine its usefulness as a predictor of DHF, plasma levels of the secreted dengue virus nonstructural protein NS1 (sNS1) were measured daily in 32 children with dengue-2 virus infections participating in a prospective, hospital-based study. Free sNS1 levels in plasma correlated with viremia levels and were higher in patients with DHF than in those with DF. An elevated free sNS1 level (> or =600 ng/mL) within 72 h of illness onset identified patients at risk for developing DHF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination.

            The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement.

              Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Thirty years ago, complement activation was proposed to be a key underlying event, but the cause of complement activation has remained unknown. The major nonstructural dengue virus (DV) protein NS1 was tested for its capacity to activate human complement in its membrane-associated and soluble forms. Plasma samples from 163 patients with DV infection and from 19 patients with other febrile illnesses were prospectively analyzed for viral load and for levels of NS1 and complement-activation products. Blood and pleural fluids from 9 patients with DSS were also analyzed. Soluble NS1 activated complement to completion, and activation was enhanced by polyclonal and monoclonal antibodies against NS1. Complement was also activated by cell-associated NS1 in the presence of specific antibodies. Plasma levels of NS1 and terminal SC5b-9 complexes correlated with disease severity. Large amounts of NS1, complement anaphylatoxin C5a, and the terminal complement complex SC5b-9 were present in pleural fluids from patients with DSS. Complement activation mediated by NS1 leads to local and systemic generation of anaphylatoxins and SC5b-9, which may contribute to the pathogenesis of the vascular leakage that occurs in patients with DHF/DSS.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                August 26 2019
                August 26 2019
                August 26 2019
                August 26 2019
                Article
                10.1172/JCI128426
                6763290
                31265436
                4a2c4a2a-e004-4dac-b742-15338b972411
                © 2019
                History

                Comments

                Comment on this article