14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Breast Cancer Antiestrogen Resistance 3 (BCAR3) – p130 Cas Interactions Promote Adhesion Disassembly and Invasion in Breast Cancer Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adhesion turnover is critical for cell motility and invasion. We previously demonstrated that the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) promotes adhesion disassembly and breast tumor cell invasion. One of two established binding partners of BCAR3 is the adaptor molecule, p130 Cas. In this study, we sought to determine whether signaling through the BCAR3/Cas complex was responsible for the cellular functions of BCAR3. We show that the entire pool of BCAR3 is in complex with Cas in invasive breast tumor cells and that these proteins co-localize in dynamic cellular adhesions. While accumulation of BCAR3 in adhesions did not require Cas binding, a direct interaction between BCAR3 and Cas was necessary for efficient dissociation of BCAR3 from adhesions. The dissociation rates of Cas and two other adhesion molecules, α-actinin and talin, were also significantly slower in the presence of a Cas-binding mutant of BCAR3, suggesting that turnover of the entire adhesion complex was delayed under these conditions. As was the case for adhesion turnover, BCAR3-Cas interactions were found to be important for BCAR3-mediated breast tumor cell chemotaxis toward serum and invasion in Matrigel. Previous work demonstrated that BCAR3 is a potent activator of Rac1, which in turn is an important regulator of adhesion dynamics and invasion. However, in contrast to wildtype BCAR3, ectopic expression of the Cas-binding mutant of BCAR3 failed to induce Rac1 activity in breast cancer cells. Together, these data show that the ability of BCAR3 to promote adhesion disassembly, tumor cell migration and invasion, and Rac1 activity is dependent on its ability to bind to Cas. The activity of BCAR3-Cas complexes as a functional unit in breast cancer is further supported by the co-expression of these molecules in multiple subtypes of human breast tumors.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.

          Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            At the leading edge of three-dimensional cell migration.

            Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell-matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrin signalling adaptors: not only figurants in the cancer story.

              Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects that are regulated by these adaptors in tumours might be crucial for the identification of new targets and the development of innovative therapeutic strategies for human cancer. In this Review we discuss the relevance of adaptor proteins in signalling that originates from integrin-mediated cell-extracellular matrix (ECM) adhesion and growth factor stimulation in the context of cell transformation and tumour progression. We specifically underline the contribution of p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK and the integrin-linked kinase (ILK)-pinch-parvin (IPP) complex to cancer, along with the more recently identified p140 Cas-associated protein (p140CAP; also known as SRCIN1).
                Bookmark

                Author and article information

                Journal
                8711562
                6325
                Oncogene
                Oncogene
                Oncogene
                0950-9232
                1476-5594
                15 March 2016
                25 April 2016
                26 October 2016
                : 10.1038/onc.2016.123
                Affiliations
                [1 ]Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
                [2 ]Biogen, Research Triangle Park, NC 27709
                [3 ]Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
                [4 ]Department of Biology, James Madison University, Harrisonburg, VA 22807
                Author notes
                Corresponding Author: Amy H. Bouton, Ph.D., Box 800734, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, ahb8y@ 123456virginia.edu , Tel: 434-924-2513, Fax: 434-982-1071
                Article
                NIHMS766767
                10.1038/onc.2016.123
                5079856
                27109104
                4a59c553-4e8f-4967-a13c-8d7361f0c761

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Oncology & Radiotherapy
                adhesion turnover,focal adhesion,breast cancer cell motility
                Oncology & Radiotherapy
                adhesion turnover, focal adhesion, breast cancer cell motility

                Comments

                Comment on this article