7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Impact of concomitant Y and Mn substitution on superconductivity in \({\mathrm{La}}_{1-y}{\mathrm{Y}}_{y}{\mathrm{Fe}}_{1-x}{\mathrm{Mn}}_{x}{\mathrm{AsO}}_{0.89}{\mathrm{F}}_{0.11}\)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Die Konstitution der Mischkristalle und die Raumf�llung der Atome

          L. Vegard (1921)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superconductivity at 43 K in an iron-based layered compound LaO(1-x)F(x)FeAs.

            The iron- and nickel-based layered compounds LaOFeP (refs 1, 2) and LaONiP (ref. 3) have recently been reported to exhibit low-temperature superconducting phases with transition temperatures T(c) of 3 and 5 K, respectively. Furthermore, a large increase in the midpoint T(c) of up to approximately 26 K has been realized in the isocrystalline compound LaOFeAs on doping of fluoride ions at the O2- sites (LaO(1-x)F(x)FeAs). Experimental observations and theoretical studies suggest that these transitions are related to a magnetic instability, as is the case for most superconductors based on transition metals. In the copper-based high-temperature superconductors, as well as in LaOFeAs, an increase in T(c) is often observed as a result of carrier doping in the two-dimensional electronic structure through ion substitution in the surrounding insulating layers, suggesting that the application of external pressure should further increase T(c) by enhancing charge transfer between the insulating and conducting layers. The effects of pressure on these iron oxypnictide superconductors may be more prominent than those in the copper-based systems, because the As ion has a greater electronic polarizability, owing to the covalency of the Fe-As chemical bond, and, thus, is more compressible than the divalent O2- ion. Here we report that increasing the pressure causes a steep increase in the onset T(c) of F-doped LaOFeAs, to a maximum of approximately 43 K at approximately 4 GPa. With the exception of the copper-based high-T(c) superconductors, this is the highest T(c) reported to date. The present result, together with the great freedom available in selecting the constituents of isocrystalline materials with the general formula LnOTMPn (Ln, Y or rare-earth metal; TM, transition metal; Pn, group-V, 'pnicogen', element), indicates that the layered iron oxypnictides are promising as a new material platform for further exploration of high-temperature superconductivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2

              The ternary iron arsenide BaFe2As2 becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium. We have discovered bulk superconductivity up to Tc = 38 K in (Ba1-xKx)Fe2As2 with x = 0.4. The parent compound BaFe2As2 as well as KFe2As2 both crystallize in the tetragonal ThCr2Si2-type structure, which consists of (FeAs)- iron arsenide layers separated by barium or potassium ions. BaFe2As2 is a poor metal and exhibits a SDW anomaly at 140 K. By substituting Ba2+ for K+ ions we have introduced holes in the (FeAs)- layers, which suppress the SDW anomaly and induce superconductivity. This scenario is very similar to the recently discovered arsenide-oxide superconductors. The Tc of 38 K in (Ba1-xKx)Fe2As2 is the highest observed critical temperature in hole doped iron arsenide superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free compounds with the ThCr2Si2-type structure. Our results suggest, that superconductivity in these systems essentially evolves from the (FeAs)- layers and may occur in other related compounds.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                February 2018
                February 28 2018
                : 97
                : 5
                Article
                10.1103/PhysRevB.97.054522
                4a6e7021-bd66-4292-a2d0-43801c678b8b
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article