5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Quiet Eye Timing and Location in the Basketball Three-Point Shot: A New Research Paradigm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated three areas of uncertainty about the role of vision in basketball shooting, the timing of fixations (early, late), the location of fixations (hoop centre, non-centre) and the effect of the defender on performance. We also sought to overcome a limitation of past quiet eye studies that reported only one quiet eye (QE) period prior to a phase of the action. Elite basketball players received the pass and took three-point shots in undefended and defended conditions. Five sequential QE periods were analyzed that were initiated prior to each phase of the shooting action: QE catch, QE arm preparation, QE arm flexion, QE arm extension, and QE ball release. We used a novel design in which the number of hits and misses were held constant by condition, thus leaving the timing and location of QE fixations free to vary across the phases during an equal number of successful and unsuccessful trials. The number of QE fixations accounted for 87% of total fixations. The greatest percent occurred during QE catch (43.6%), followed by QE arm flexion (34.1%), QE arm extension (17.5%) and QE ball release (4.8%). No fixations were found prior to QE arm preparation, due to a saccade made immediately to the target after QE catch. Fixation frequency averaged 2.20 per trial, and 1.25 during the final shooting action, meaning that most participants had time for only one fixation as the shot was taken. Accuracy was enhanced when: (1) an early QE offset occurred prior to the catch, (2) an early saccade was made to the target, (3) a longer QE duration occurred during arm flexion, and (4) QE arm flexion was located on the centre of the hoop, rather than on non-centre locations. Overall, the results provide evidence that vision of the hoop was severely limited during the last phase of the shooting action (QE ball release). The significance of the results is explored in the discussion, along with a QE training program designed to improve three-point shooting. Overall, the results greatly expand the role of the QE in explaining optimal motor performance.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Perceptual-cognitive expertise in sport: a meta-analysis.

          Research focusing on perceptual-cognitive skill in sport is abundant. However, the existing qualitative syntheses of this research lack the quantitative detail necessary to determine the magnitude of differences between groups of varying levels of skills, thereby limiting the theoretical and practical contribution of this body of literature. We present a meta-analytic review focusing on perceptual-cognitive skill in sport (N = 42 studies, 388 effect sizes) with the primary aim of quantifying expertise differences. Effects were calculated for a variety of dependent measures (i.e., response accuracy, response time, number of visual fixations, visual fixation duration, and quiet eye period) using point-biserial correlation. Results indicated that experts are better than nonexperts in picking up perceptual cues, as revealed by measures of response accuracy and response time. Systematic differences in visual search behaviors were also observed, with experts using fewer fixations of longer duration, including prolonged quiet eye periods, compared with non-experts. Several factors (e.g., sport type, research paradigm employed, and stimulus presentation modality) significantly moderated the relationship between level of expertise and perceptual-cognitive skill. Practical and theoretical implications are presented and suggestions for empirical work are provided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human gaze control during real-world scene perception.

            In human vision, acuity and color sensitivity are best at the point of fixation, and the visual-cognitive system exploits this fact by actively controlling gaze to direct fixation towards important and informative scene regions in real time as needed. How gaze control operates over complex real-world scenes has recently become of central concern in several core cognitive science disciplines including cognitive psychology, visual neuroscience, and machine vision. This article reviews current approaches and empirical findings in human gaze control during real-world scene perception.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data.

              Event detection is used to classify recorded gaze points into periods of fixation, saccade, smooth pursuit, blink, and noise. Although there is an overall consensus that current algorithms for event detection have serious flaws and that a de facto standard for event detection does not exist, surprisingly little work has been done to remedy this problem. We suggest a new velocity-based algorithm that takes several of the previously known limitations into account. Most important, the new algorithm identifies so-called glissades, a wobbling movement at the end of many saccades, as a separate class of eye movements. Part of the solution involves designing an adaptive velocity threshold that makes the event detection less sensitive to variations in noise level and the algorithm settings-free for the user. We demonstrate the performance of the new algorithm on eye movements recorded during reading and scene perception and compare it with two of the most commonly used algorithms today. Results show that, unlike the currently used algorithms, fixations, saccades, and glissades are robustly identified by the new algorithm. Using this algorithm, we found that glissades occur in about half of the saccades, during both reading and scene perception, and that they have an average duration close to 24 msec. Due to the high prevalence and long durations of glissades, we argue that researchers must actively choose whether to assign the glissades to saccades or fixations; the choice affects dependent variables such as fixation and saccade duration significantly. Current algorithms do not offer this choice, and their assignments of each glissade are largely arbitrary.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                30 October 2019
                2019
                : 10
                : 2424
                Affiliations
                [1] 1Faculty of Kinesiology, University of Calgary , Calgary, AB, Canada
                [2] 2Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool, United Kingdom
                Author notes

                Edited by: Mauro Murgia, University of Trieste, Italy

                Reviewed by: Sérgio Tosi Rodrigues, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Christopher Janelle, University of Florida, United States

                *Correspondence: Joan N. Vickers, vickers@ 123456ucalgary.ca

                This article was submitted to Movement Science and Sport Psychology, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2019.02424
                6836760
                31736825
                4a913ae4-c21e-4307-8936-97bd6d1ffec8
                Copyright © 2019 Vickers, Causer and Vanhooren.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 July 2019
                : 11 October 2019
                Page count
                Figures: 6, Tables: 5, Equations: 0, References: 76, Pages: 16, Words: 0
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                vision,motor control,attention,perception-action,expertise,eye tracking,training

                Comments

                Comment on this article