23
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Entanglement and thermodynamics after a quantum quench in integrable systems

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics, respectively. In the last decade the study of quantum quenches revealed that these two concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure initial state maintains the system globally at zero entropy, at long time after the quench local properties are captured by an appropriate statistical ensemble with non zero thermodynamic entropy, which can be interpreted as the entanglement accumulated during the dynamics. Therefore, understanding the post-quench entanglement evolution unveils how thermodynamics emerges in isolated quantum systems. An exact computation of the entanglement dynamics has been provided only for non-interacting systems, and it was believed to be unfeasible for genuinely interacting models. Conversely, here we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the asymptotic state, leads to a complete analytical understanding of the entanglement dynamics in the space-time scaling limit. Our framework requires only knowledge about the steady state, and the velocities of the low-lying excitations around it. We provide a thorough check of our result focusing on the spin-1/2 Heisenberg XXZ chain, and considering quenches from several initial states. We compare our results with numerical simulations using both tDMRG and iTEBD, finding always perfect agreement.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Thermalization and its mechanism for generic isolated quantum systems

          Time dynamics of isolated many-body quantum systems has long been an elusive subject. Very recently, however, meaningful experimental studies of the problem have finally become possible, stimulating theoretical interest as well. Progress in this field is perhaps most urgently needed in the foundations of quantum statistical mechanics. This is so because in generic isolated systems, one expects nonequilibrium dynamics on its own to result in thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible, in a sense analogous to that in which dynamical chaos makes classical thermalization possible. For example, dynamical chaos itself cannot occur in an isolated quantum system, where time evolution is linear and the spectrum is discrete. Underscoring that new rules could apply in this case, some recent studies even suggested that statistical mechanics may give wrong predictions for the outcomes of relaxation in such systems. Here we demonstrate that an isolated generic quantum many-body system does in fact relax to a state well-described by the standard statistical mechanical prescription. Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation and that thermalization happens instead at the level of individual eigenstates, as first proposed by J.M. Deutsch and M. Srednicki. A striking consequence of this eigenstate thermalization scenario is that the knowledge of a single many-body eigenstate suffices to compute thermal averages-any eigenstate in the microcanonical energy window will do, as they all give the same result.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measuring entanglement entropy in a quantum many-body system.

            Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Chaos and Quantum Thermalization

              We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey {\it Berry's conjecture}. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon {\it eigenstate thermalization}. We show that a generic initial state will approach thermal equilibrium at least as fast as \(O(\hbar/\Delta)t^{-1}\), where \(\Delta\) is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a new foundation for quantum statistical mechanics.
                Bookmark

                Author and article information

                Journal
                2016-08-01
                Article
                1608.00614
                4a99ac93-c489-4c24-b1b3-c181e619d633

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                4+2 pages, 6+2 figures
                cond-mat.str-el cond-mat.quant-gas cond-mat.stat-mech math-ph math.MP quant-ph

                Mathematical physics,Condensed matter,Quantum physics & Field theory,Quantum gases & Cold atoms,Mathematical & Computational physics

                Comments

                Comment on this article