4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants in fine particulate matter (PM) long known to have mutagenic and carcinogenic effects, but much is unknown about the importance of local and remote sources for PAH levels observed in population-dense urban environments. A year-long sampling campaign in Athens, Greece, where more than 150 samples were analyzed for 31 PAHs and a wide range of chemical markers, was combined with positive matrix factorization (PMF) to constrain the temporal variability, sources, and carcinogenic risk associated with PAHs. It was found that biomass burning (BB), a source mostly present during wintertime intense pollution events (observed for 18 % of measurement days in 2017), led to wintertime PAH levels that were 7 times higher than in other seasons and was as important for annual mean PAH concentrations (31 %) as diesel and oil (33 %) and gasoline (29 %) sources. The contribution of non-local sources, although limited on an annual basis (7 %), increased during summer, becoming comparable to that of local sources combined. The fraction of PAHs (12 members that were included in the PMF analysis) that was associated with BB was also linked to increased health risk compared to the other sources, accounting for almost half the annual PAH carcinogenic potential (43 %). This can result in a large number of excess cancer cases due to BB-related high PM levels and urges immediate action to reduce residential BB emissions in urban areas facing similar issues.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          Bounding the role of black carbon in the climate system: A scientific assessment

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Woodsmoke health effects: a review.

            The sentiment that woodsmoke, being a natural substance, must be benign to humans is still sometimes heard. It is now well established, however, that wood-burning stoves and fireplaces as well as wildland and agricultural fires emit significant quantities of known health-damaging pollutants, including several carcinogenic compounds. Two of the principal gaseous pollutants in woodsmoke, CO and NOx, add to the atmospheric levels of these regulated gases emitted by other combustion sources. Health impacts of exposures to these gases and some of the other woodsmoke constituents (e.g., benzene) are well characterized in thousands of publications. As these gases are indistinguishable no matter where they come from, there is no urgent need to examine their particular health implications in woodsmoke. With this as the backdrop, this review approaches the issue of why woodsmoke may be a special case requiring separate health evaluation through two questions. The first question we address is whether woodsmoke should be regulated and/or managed separately, even though some of its separate constituents are already regulated in many jurisdictions. The second question we address is whether woodsmoke particles pose different levels of risk than other ambient particles of similar size. To address these two key questions, we examine several topics: the chemical and physical nature of woodsmoke; the exposures and epidemiology of smoke from wildland fires and agricultural burning, and related controlled human laboratory exposures to biomass smoke; the epidemiology of outdoor and indoor woodsmoke exposures from residential woodburning in developed countries; and the toxicology of woodsmoke, based on animal exposures and laboratory tests. In addition, a short summary of the exposures and health effects of biomass smoke in developing countries is provided as an additional line of evidence. In the concluding section, we return to the two key issues above to summarize (1) what is currently known about the health effects of inhaled woodsmoke at exposure levels experienced in developed countries, and (2) whether there exists sufficient reason to believe that woodsmoke particles are sufficiently different to warrant separate treatment from other regulated particles. In addition, we provide recommendations for additional woodsmoke research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2021
                December 07 2021
                : 21
                : 23
                : 17865-17883
                Article
                10.5194/acp-21-17865-2021
                4ab63a2e-f828-42e8-a20a-5b03ee60b2eb
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article