53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Changes in Skin Caused by Scd1 Deficiency: A Focus on Retinol Metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously reported that mice with skin-specific deletion of stearoyl-CoA desaturase-1 ( Scd1) recapitulated the skin phenotype and hypermetabolism observed in mice with a whole-body deletion of Scd1. In this study, we first performed a diet-induced obesity experiment at thermoneutral temperature (33°C) and found that skin-specific Scd1 knockout (SKO) mice still remain resistant to obesity. To elucidate the metabolic changes in the skin that contribute to the obesity resistance and skin phenotype, we performed microarray analysis of skin gene expression in male SKO and control mice fed a standard rodent diet. We identified an extraordinary number of differentially expressed genes that support the previously documented histological observations of sebaceous gland hypoplasia, inflammation and epidermal hyperplasia in SKO mice. Additionally, transcript levels were reduced in skin of SKO mice for genes involved in fatty acid synthesis, elongation and desaturation, which may be attributed to decreased abundance of key transcription factors including SREBP1c, ChREBP and LXRα. Conversely, genes involved in cholesterol synthesis were increased, suggesting an imbalance between skin fatty acid and cholesterol synthesis. Unexpectedly, we observed a robust elevation in skin retinol, retinoic acid and retinoic acid-induced genes in SKO mice. Furthermore, SEB-1 sebocytes treated with retinol and SCD inhibitor also display an elevation in retinoic acid-induced genes. These results highlight the importance of monounsaturated fatty acid synthesis for maintaining retinol homeostasis and point to disturbed retinol metabolism as a novel contributor to the Scd1 deficiency-induced skin phenotype.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.

          Although iron is required to sustain life, its free concentration and metabolism have to be tightly regulated. This is achieved through a variety of iron-binding proteins including transferrin and ferritin. During infection, bacteria acquire much of their iron from the host by synthesizing siderophores that scavenge iron and transport it into the pathogen. We recently demonstrated that enterochelin, a bacterial catecholate siderophore, binds to the host protein lipocalin 2 (ref. 5). Here, we show that this event is pivotal in the innate immune response to bacterial infection. Upon encountering invading bacteria the Toll-like receptors on immune cells stimulate the transcription, translation and secretion of lipocalin 2; secreted lipocalin 2 then limits bacterial growth by sequestrating the iron-laden siderophore. Our finding represents a new component of the innate immune system and the acute phase response to infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The hair follicle as a dynamic miniorgan.

            Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal-mesodermal interactions. After birth, mature and actively growing hair follicles eventually become anchored in the subcutis, and periodically regenerate by spontaneously undergoing repetitive cycles of growth (anagen), apoptosis-driven regression (catagen), and relative quiescence (telogen). Our molecular understanding of hair follicle biology relies heavily on mouse mutants with abnormalities in hair structure, growth, and/or pigmentation. These mice have allowed novel insights into important general molecular and cellular processes beyond skin and hair biology, ranging from organ induction, morphogenesis and regeneration, to pigment and stem cell biology, cell proliferation, migration and apoptosis. In this review, we present basic concepts of hair follicle biology and summarize important recent advances in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors.

              Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here, we show that, in addition to functioning through RAR, RA activates the "orphan" nuclear receptor PPARbeta/delta, which, in turn, induces the expression of prosurvival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARbeta/delta, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a proapoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARbeta/delta and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                9 May 2011
                : 6
                : 5
                : e19734
                Affiliations
                [1 ]Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                [2 ]Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                [3 ]Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
                [4 ]Institute of Human Nutrition and Department of Medicine, Columbia University, New York, New York, United States of America
                [5 ]Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                Hospital Universitario 12 de Octubre, Spain
                Author notes

                Conceived and designed the experiments: MTF CMP SMO WSB CK JMN. Performed the experiments: MTF CMP SMO KS JAD. Analyzed the data: MTF CMP SMO KS JAD WSB CK JMN. Contributed reagents/materials/analysis tools: SMO JAD WSB CK. Wrote the paper: MTF CMP JMN.

                Article
                PONE-D-11-00890
                10.1371/journal.pone.0019734
                3090422
                21573029
                4b165f46-7386-47f6-a1bc-99cab7b6a640
                Flowers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 January 2011
                : 6 April 2011
                Page count
                Pages: 18
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Skin
                Biochemistry
                Lipids
                Fatty Acids
                Lipid Metabolism
                Metabolism
                Lipid Metabolism
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Anatomy and Physiology
                Skin

                Uncategorized
                Uncategorized

                Comments

                Comment on this article