5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mesenchymal stem cells attenuate adriamycin-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of the NF-kB : MSCs attenuate ADR-induced nephropathy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to evaluate the molecular mechanism mitigating progress of chronic nephropathy by mesenchymal stem cells (MSCs).

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB in renal inflammation.

          The NF-kappaB family of transcription factors regulates the induction and resolution of inflammation. Two main pathways, classical and alternative, control the nuclear translocation of NF-kappaB. Classical NF-kappaB activation is usually a rapid and transient response to a wide range of stimuli whose main effector is RelA/p50. The alternative NF-kappaB pathway is a more delayed response to a smaller range of stimuli resulting in DNA binding of RelB/p52 complexes. Additional complexity in this system involves the posttranslational modification of NF-kappaB proteins and an ever-increasing range of co-activators, co-repressors, and NF-kappaB complex proteins. Collectively, NF-kappaB regulates the expression of numerous genes that play a key role in the inflammatory response during human and experimental kidney injury. Multiple stimuli activate NF-kappaB through the classical pathway in somatic renal cells, and noncanonical pathway activation by TWEAK occurs in acute kidney injury. Under most test conditions, specific NF-kappaB inhibitors tend to reduce inflammation in experimental kidney injury but not always. Although many drugs in current use clinically influence NF-kappaB activation, there are no data regarding specific NF-kappaB inhibition in human kidney disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stromal cells protect against acute tubular injury via an endocrine effect.

            Emerging evidence suggests that the intravenous injection of bone marrow-derived stromal cells (BMSC) improves renal function after acute tubular injury, but the mechanism of this effect is controversial. In this article, we confirm that intravenous infusion of male BMSC reduced the severity of cisplatin-induced acute renal failure in adult female mice. This effect was also seen when BMSC (or adipocyte-derived stromal cells (AdSC)), were given by intraperitoneal injection. Infusion of BMSC enhanced tubular cell proliferation after injury and decreased tubular cell apoptosis. Using the Y chromosome as a marker of donor stromal cells, examination of multiple kidney sections at one or four days after cell infusion failed to reveal any examples of stromal cells within the tubules, and only rare examples of stromal cells within the renal interstitium. Furthermore, conditioned media from cultured stromal cells induced migration and proliferation of kidney-derived epithelial cells and significantly diminished cisplatin-induced proximal tubule cell death in vitro. Intraperitoneal administration of this conditioned medium to mice injected with cisplatin diminished tubular cell apoptosis, increased survival, and limited renal injury. Thus, marrow stromal cells protect the kidney from toxic injury by secreting factors that limit apoptosis and enhance proliferation of the endogenous tubular cells, suggesting that transplantation of the cells themselves is not necessary. Identification of the stromal cell-derived protective factors may provide new therapeutic options to explore in humans with acute kidney injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications

              Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD).
                Bookmark

                Author and article information

                Journal
                Nephrology
                Nephrology
                Wiley
                13205358
                May 2018
                May 2018
                April 25 2018
                : 23
                : 5
                : 483-492
                Affiliations
                [1 ]Department of Anatomy; Yeungnam University College of Medicine; Daegu South Korea
                [2 ]Pediatrics; Yeungnam University College of Medicine; Daegu South Korea
                [3 ]Department of Anatomy; Kyungpook National University School of Dentistry; Daegu South Korea
                Article
                10.1111/nep.13047
                28326639
                4b31025e-5315-4076-bce9-5aeae1fd811d
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article