39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extending the lifetime of a quantum bit with error correction in superconducting circuits

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Scheme for reducing decoherence in quantum computer memory.

          Shor (1995)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superconducting circuits for quantum information: an outlook.

            The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Error Correcting Codes in Quantum Theory.

              Steane (1996)
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                August 2016
                July 20 2016
                : 536
                : 7617
                : 441-445
                Article
                10.1038/nature18949
                27437573
                4b3f3756-5b98-4241-a401-2223dd541135
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article