42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A computational model of the hypothalamic - pituitary - gonadal axis in female fathead minnows ( Pimephales promelas) exposed to 17α-ethynylestradiol and 17β-trenbolone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Endocrine disrupting chemicals (e.g., estrogens, androgens and their mimics) are known to affect reproduction in fish. 17α-ethynylestradiol is a synthetic estrogen used in birth control pills. 17β-trenbolone is a relatively stable metabolite of trenbolone acetate, a synthetic androgen used as a growth promoter in livestock. Both 17α-ethynylestradiol and 17β-trenbolone have been found in the aquatic environment and affect fish reproduction. In this study, we developed a physiologically-based computational model for female fathead minnows (FHM, Pimephales promelas), a small fish species used in ecotoxicology, to simulate how estrogens (i.e., 17α-ethynylestradiol) or androgens (i.e., 17β-trenbolone) affect reproductive endpoints such as plasma concentrations of steroid hormones (e.g., 17β-estradiol and testosterone) and vitellogenin (a precursor to egg yolk proteins).

          Results

          Using Markov Chain Monte Carlo simulations, the model was calibrated with data from unexposed, 17α-ethynylestradiol-exposed, and 17β-trenbolone-exposed FHMs. Four Markov chains were simulated, and the chains for each calibrated model parameter (26 in total) converged within 20,000 iterations. With the converged parameter values, we evaluated the model's predictive ability by simulating a variety of independent experimental data. The model predictions agreed with the experimental data well.

          Conclusions

          The physiologically-based computational model represents the hypothalamic-pituitary-gonadal axis in adult female FHM robustly. The model is useful to estimate how estrogens (e.g., 17α-ethynylestradiol) or androgens (e.g., 17β-trenbolone) affect plasma concentrations of 17β-estradiol, testosterone and vitellogenin, which are important determinants of fecundity in fish.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Collapse of a fish population after exposure to a synthetic estrogen.

          Municipal wastewaters are a complex mixture containing estrogens and estrogen mimics that are known to affect the reproductive health of wild fishes. Male fishes downstream of some wastewater outfalls produce vitellogenin (VTG) (a protein normally synthesized by females during oocyte maturation) and early-stage eggs in their testes, and this feminization has been attributed to the presence of estrogenic substances such as natural estrogens [estrone or 17beta-estradiol (E2)], the synthetic estrogen used in birth-control pills [17 alpha-ethynylestradiol (EE2)], or weaker estrogen mimics such as nonylphenol in the water. Despite widespread evidence that male fishes are being feminized, it is not known whether these low-level, chronic exposures adversely impact the sustainability of wild populations. We conducted a 7-year, whole-lake experiment at the Experimental Lakes Area (ELA) in northwestern Ontario, Canada, and showed that chronic exposure of fathead minnow (Pimephales promelas) to low concentrations (5-6 ng x L(-1)) of the potent 17 alpha-ethynylestradiol led to feminization of males through the production of vitellogenin mRNA and protein, impacts on gonadal development as evidenced by intersex in males and altered oogenesis in females, and, ultimately, a near extinction of this species from the lake. Our observations demonstrate that the concentrations of estrogens and their mimics observed in freshwaters can impact the sustainability of wild fish populations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Repeating history: pharmaceuticals in the environment.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of the androgenic growth promoter 17-beta-trenbolone on fecundity and reproductive endocrinology of the fathead minnow.

              Trenbolone acetate is a synthetic steroid that is extensively used in the United States as a growth promoter in beef cattle. The acetate is administered to livestock via slow-release implants; some is converted by the animal to 17-beta-trenbolone, a relatively potent androgen receptor agonist in mammalian systems. Recent studies indicate that excreted 17-beta-trenbolone is comparatively stable in animal waste, suggesting the potential for exposure to aquatic animals via direct discharge, runoff, or both. However, little is known concerning the toxicity of trenbolone to fish. Our goal was to assess the effects of 17-beta-trenbolone on reproductive endocrinology of the fathead minnow (Pimephales promelas). An in vitro competitive binding study with the fathead minnow androgen receptor demonstrated that 17-beta-trenbolone had a higher affinity for the receptor than that of the endogenous ligand, testosterone. Male and female fish were exposed for 21 d to nominal (target) concentrations of 17-beta-trenbolone ranging from 0.005 to 50 microg/L. Fecundity of the fish was significantly reduced by exposure to measured test concentrations > or = 0.027 microg/ L. The 17-beta-trenbolone was clearly androgenic in vivo at these concentrations, as evidenced by the de novo production in females of dorsal (nuptial) tubercles, structures normally present only on the heads of mature males. Plasma steroid (testosterone and beta-estradiol) and vitellogenin concentrations in the females all were significantly reduced by exposure to 17-beta-trenbolone. The 17-beta-trenbolone also altered reproductive physiology of male fathead minnows, albeit at concentrations much higher than those producing effects in females. Males exposed to 17-beta-trenbolone at 41 microg/L (measured) exhibited decreased plasma concentrations of 11-ketotestosterone and increased concentrations of beta-estradiol and vitellogenin. Overall, our studies indicate that 17-beta-trenbolone is a potent androgen and reproductive toxicant in fish. Given the widespread use of trenbolone acetate as a growth promoter, and relative stability of its metabolites in animal wastes, further studies are warranted to assess potential ecological risk.
                Bookmark

                Author and article information

                Journal
                BMC Syst Biol
                BMC Systems Biology
                BioMed Central
                1752-0509
                2011
                5 May 2011
                : 5
                : 63
                Affiliations
                [1 ]Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, OR, 97006, USA
                [2 ]Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
                [3 ]U.S. EPA, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
                [4 ]Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
                [5 ]Department of Forestry and Natural Resources, Purdue University, Lafayette, IN, 47907, USA
                [6 ]Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA
                [7 ]U.S. EPA, Molecular Indicator Research Branch, Cincinnati, OH, 45268, USA
                [8 ]The McConnell Group c/o U.S. EPA NERL EERD, USA
                Article
                1752-0509-5-63
                10.1186/1752-0509-5-63
                3118352
                21545743
                4bb74a68-6354-4198-a007-1162034f8928
                Copyright ©2011 Li et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 December 2010
                : 5 May 2011
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article