33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy.

      Journal of human genetics
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exon skipping therapy has recently received attention for its ability to convert the phenotype of lethal Duchenne muscular dystrophy (DMD) to a more benign form, Becker muscular dystrophy (BMD), by correcting the open reading frame. This therapy has mainly focused on a hot-spot (exons 45-55) mutation in the DMD gene. Exon skipping of an entire stretch of exons 45-55 is an approach applicable to 46.9% of DMD patients. However, the resulting phenotype is not yet fully understood. Here we examined the clinical profiles of 24 patients with BMD resulting from deletions starting at exon 45. The Δ45-55 group ranged in age from 2 to 87 years; no mortality was observed, and one patient was ambulatory at 79 years of age. The age at which patients became wheelchair-bound in the Δ45-48 group (18-88 years old) was approximately 50 years. Cardiomyopathy was well controlled by pharmaceuticals in both deletion groups. In contrast, the Δ45-47 and Δ45-49 groups exhibited more severe phenotypes than those with other mutations: the age at which patients in the Δ45-49 group became wheelchair-bound was around 30-40 years. Our study shows that clinical severity differs between each hot-spot deletion.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Dystrophin: the protein product of the Duchenne muscular dystrophy locus.

          The protein product of the human Duchenne muscular dystrophy locus (DMD) and its mouse homolog (mDMD) have been identified by using polyclonal antibodies directed against fusion proteins containing two distinct regions of the mDMD cDNA. The DMD protein is shown to be approximately 400 kd and to represent approximately 0.002% of total striated muscle protein. This protein is also detected in smooth muscle (stomach). Muscle tissue isolated from both DMD-affected boys and mdx mice contained no detectable DMD protein, suggesting that these genetic disorders are homologous. Since mdx mice present no obvious clinical abnormalities, the identification of the mdx mouse as an animal model for DMD has important implications with regard to the etiology of the lethal DMD phenotype. We have named the protein dystrophin because of its identification via the isolation of the Duchenne muscular dystrophy locus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase.

            UMD-DMD France is a knowledgebase developed through a multicenter academic effort to provide an up-to-date resource of curated information covering all identified mutations in patients with a dystrophinopathy. The current release includes 2,411 entries consisting in 2,084 independent mutational events identified in 2,046 male patients and 38 expressing females, which corresponds to an estimated number of 39 people per million with a genetic diagnosis of dystrophinopathy in France. Mutations consist in 1,404 large deletions, 215 large duplications, and 465 small rearrangements, of which 39.8% are nonsense mutations. The reading frame rule holds true for 96% of the DMD patients and 93% of the BMD patients. Quality control relies on the curation by four experts for the DMD gene and related diseases. Data on dystrophin and RNA analysis, phenotypic groups, and transmission are also available. About 24% of the mutations are de novo events. This national centralized resource will contribute to a greater understanding of prevalence of dystrophinopathies in France, and in particular, of the true frequency of BMD, which was found to be almost half (43%) that of DMD. UMD-DMD is a searchable anonymous database that includes numerous newly developed tools, which can benefit to all the scientific community interested in dystrophinopathies. Dedicated functions for genotype-based therapies allowed the prediction of a new multiexon skipping (del 45-53) potentially applicable to 53% of the deleted DMD patients. Finally, such a national database will prove to be useful to implement the international global DMD patients' registries under development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications.

              Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach.
                Bookmark

                Author and article information

                Journal
                27974813
                10.1038/jhg.2016.152

                Comments

                Comment on this article