Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endocrine disrupting chemicals (phenol and phthalates) in the South African environment: a need for more monitoring

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There has been increasing concern about the impacts of exposure to chemical compounds with endocrine disrupting activities in the environment, especially aquatic environments, to wildlife and humans. South Africa is known to have used and abused most chemicals listed by developed and developing countries as endocrine-disrupting chemicals. Endocrinedisrupting chemicals have been reported in water, sediment and serum, as well as in fish tissue samples, at a level that could trigger endocrine disruption in humans and wildlife. Although some monitoring has been reported, particularly in water systems within the country, information on EDCs in other environmental matrices is scanty. The water systems monitored so far are very few. The strongest economy in Africa, and an emerging world economy depending on agriculture, mining, manufacturing and industry, needs to focus more on monitoring and to strengthen government organs and institutions to monitor and ensure environmental safety.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants.

          Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula of MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17 beta-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several "new" estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase in cell yields. The aims of the work summarized in this paper were a) to validate the E-SCREEN assay; b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; c) to assess whether environmental estrogens may act cumulatively; and finally d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endocrine disrupting chemicals in indoor and outdoor air.

            The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals-that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting effects is currently underway, so questions remain as to the health impacts of these exposures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Personal Care Product Use Predicts Urinary Concentrations of Some Phthalate Monoesters

              Phthalates are multifunctional chemicals used in a variety of applications, including personal care products. The present study explored the relationship between patterns of personal care product use and urinary levels of several phthalate metabolites. Subjects include 406 men who participated in an ongoing semen quality study at the Massachusetts General Hospital Andrology Laboratory between January 2000 and February 2003. A nurse-administered questionnaire was used to determine use of personal care products, including cologne, aftershave, lotions, hair products, and deodorants. Phthalate monoester concentrations were measured in a single spot urine sample by isotope dilution–high-performance liquid chromatography coupled to tandem mass spectrometry. Men who used cologne or aftershave within 48 hr before urine collection had higher median levels of monoethyl phthalate (MEP) (265 and 266 ng/mL, respectively) than those who did not use cologne or aftershave (108 and 133 ng/mL, respectively). For each additional type of product used, MEP increased 33% (95% confidence interval, 14–53%). The use of lotion was associated with lower urinary levels of monobutyl phthalate (MBP) (14.9 ng/mL), monobenzyl phthalate (MBzP) (6.1 ng/mL), and mono(2-ethylhexyl) phthalate (MEHP) (4.4 ng/mL) compared with men who did not use lotion (MBP, 16.8 ng/mL; MBzP, 8.6 ng/mL; MEHP, 7.2 ng/mL). The identification of personal care products as contributors to phthalate body burden is an important step in exposure characterization. Further work in this area is needed to identify other predictors of phthalate exposure.
                Bookmark

                Author and article information

                Journal
                wsa
                Water SA
                Water SA
                Water Research Commission (WRC) (Pretoria, Gauteng, South Africa )
                0378-4738
                1816-7950
                October 2010
                : 36
                : 5
                : 671-682
                Affiliations
                [01] Cape Town orgnameCape Peninsula University of Technology orgdiv1Faculty of Applied Sciences South Africa
                [02] Pretoria orgnameTshwane University of Technology orgdiv1Faculty of Natural Sciences South Africa
                Article
                S1816-79502010000500017 S1816-7950(10)03600517
                4c8e9b42-1ab2-41d1-9427-358ea6462a42

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 29 October 2009
                : 03 September 2010
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 123, Pages: 12
                Product

                SciELO South Africa

                Categories
                Review

                South Africa,phenols,Endocrine disrupting chemicals (EDCs),monitoring,phthalates

                Comments

                Comment on this article